

E D I T I N G G U I D E
by Mr-Murray

3

© Sascha “Mr-Murray” Hoffmann 2009
Unofficial release candidate. With kind permission and assistance of Bohemia Interactive®.

The contents of this Editing Guide will help you to make the work with the Armed Assault®
Editor much more easier. You do not need any knowledge in programming to create
interesting and fun full missions for Armed Assault®.

That’s true, without any knowledge in programming! But it wouldn’t be bad if you have
some experience out of the work with the Operation Flashpoint® Editor of course, it would
be an advantage but it is not quite needed. This Guide will explain you the parts of the
Editor individually and many examples will help you to understand the single operations.
Additional to this, the Armed Assault Editing Guide will show you the nearly unlimited
possibilities which were offered you by the Editor.

After you worked with this Guide for some time, so you’ll be able to create your own
exciting Missions. The only thing you really need is creativity and lots of ideas which wants
all to be come true. The possibility to create your own movies, which one can compare
with Hollywood movies, and further the possibility to add your favorite Sound files into
the Missions will pull the player in the ban.

Create dynamic Missions with different weather, time of day and furthermore different
mission targets. Units, Objects or the Player himself are located at any other positions
every time when the mission begins again. All these possibilities shouldn’t actually
anymore be a problem for you.

Now it is up to you and your ideas and your creativity to create new good Missions. This
Guide doesn’t contain an directing Book, no Scenarios or any other Stories for your
Missions. That’s all up to you. But with this Guide, you have all you need to make your
ideas come true. And if anything doesn’t work as you want to, so just relax, exit the editor
and play some missions, go on with your campaign or enter the Multiplayer lobby to get
new ideas for your mission.

Armed Assault® is setting up as Operation Flashpoint® successor with an own created
script language from his ancestor. There was many new changes made here and there
and lots of new stuff used in ArmA© but the basic concept is still the same. The Editor still
enables the user to keep a quite well overview and the missions folder resp. their contents
are still the same as well. So read, try and edit yourself with this Guide through the World
of Armed-Assault.

Good luck and lot of fun with the Editor is wishing you BIS and Mr-Murray.

4

Prologue

5

This guide is meant as an introduction to the Armed Assault® Editor and shall make the
work with the Editor much easier, especially for the editing beginners. The scripts, which
are all shown here, are completely fictitious and can be further developed, of course.

The Editor offers much more possibilities than explained here in this book. That’s why I’d
like to insinuate the official Wiki:

http://community.bistudio.com/wiki

The Wiki is always up to date about everything related to editing, scripting and all around
Armed Assault®. The basics are shown here and enable one to get an impression about
what the Editor is able to do. That shall help you to let your ideas come true. All scripts
which are shown and explained in the 6th Chapter can be found in the official forum.

www.forum.german-gamers-club.de

With this Guide I would like to say thank you to all Operation Flashpoint® fans who are all
still keeping loyal to the game and I also would like to say thank you to Bohemia
Interactive Studios, because without those guys, that game - with such a mass of
possibilities - would never have been created.

I would further like to say thank you to the whole Mapfact team, BadAss, Chneemann,
Flashpoint_K, JörgF., Kriegerdaemon, LockheedMartin$ch, MCPXXL, OneManGang, Silola,
Sniping-Jack, Raedor, Lester, Wüstenfuchs and our helping hands MemphisBelle, Simba,
Marco-Polo-IV and Sgt.Ace, who supported me through the last years very much.

A very special thanks is dedicated to Raedor and Chneemann who were always helping
me with trouble around ArmA©. Furthermore, I like to say thank you to Andre Scheufeld,
Andreas Holzwart, Rastatovich and Wolle for their amazing support. Real special thanks
to the translator of this guide MemphisBelle and his helping hands Metal0130 and Matt
Rochelle for their very great revision support.

I also won't forget the people who are the most important to me; My family, my friends
and especially my girlfriend, without their support I never could finish the project.

Yours,

Sascha Hoffmann aka Mr-Murray

Annotation

I say thank you

I have decided one way or another to intergrate some community work into this book.
Because my guide already existed along with serveral versions and with the newest
publication I wanted the community to be apart of it. So I talked with Morphicon and we
both decided that a screenshot competition would be the best thing.

I thank you again to everyone who participated in the contest and I also thank the website
Armed-Assault.de for realising the importance of this competition.

The results of this competition can be seen in the proceeds of this book. Most of them
were placed on the single chapter directories, but many of them in the contents of each
chapter as well.

The following images are the ones which has been voted by the community for the first
three ranks. The winner are:

Winner 1: Marcus-Ergalla (Aljosha Rall)

Winner 2: Mr. Burns (Andreas Schmitz)

Winner 3: Stoned Boy (Frank Nobis)

6

Platz 1: Marcus-Ergalla

Community Screenshot Contest

7

Platz 2: Mr Burns

Platz 3: Stoned Boy

Chapter 1: The Beginning

1.1 The User Interface 16
1.2 Adding Units 20
1.3 Adding Groups 26
1.4 Adding Triggers 27
1.5 Adding Waypoints 30
1.6 Synchronize 35
1.7 Adding Markers 36
1.8 Rotating Units And Objects 39
1.9 Merging Units 39

1.10 Edit Units With Allocated Waypoints 40

Chapter 2: The Files

2.1 The Missions Folder 42
2.2 The Mission.sqm 43
2.3 The Description.ext 48
2.4 The Stringtable.csv 51
2.5 The Init.sqs 53
2.6 The Script (.sqs) 54
2.7 The Function (.sqf) 55
2.8 The Paa-Format 55
2.9 The PBO 56

2.10 The Sound Files 56
2.11 The Lip-Files 57
2.12 The Overview 58
2.13 The Briefing 59

Chapter 3: Weapons – Vehicles – Units – Objects

3.1 The Hand Weapons And Static Weapons 64
3.2 The Weapons Class Name List 68
3.3 Arm And Equip Units 70
3.4 The Weapon And Ammo Crates 71
3.5 Load And Unload Vehicles 71
3.6 Weapon Selection In The Briefing 72
3.7 The Vehicle Classes 73
3.8 The Vehicle Weapons 76
3.9 The Unit Classes 77

3.10 The Shell Classes 80
3.11 The Object- and Building Classes 81
3.12 The Plant Classes 88

8

Directory

3.13 The Rock Classes 90
3.14 The Sign Classes 91
3.15 Getting Weapon And Magazine Types Displayed 92
3.16 Getting Fired Type 92
3.17 Does unit have a weapon? 92
3.18 Primary or secondary weapon of a unit 93
3.19 Does unit have ammunition? 93
3.20 Creating mines 93
3.21 Creating weapons and magazines 94
3.22 Getting weapon direction view displayed 95

Chapter 4: The Mission

4.1 The Mission Name 97
4.2 The Mission Start 97
4.3 The Mission Accessories 98
4.4 The Mission Appraisal 99
4.5 The Mission Targets 99
4.6 Finishing a Mission 101
4.7 Saving a Mission 103

Chapter 5: The Mission Accessories

5.1 Empty or locked vehicle 106
5.2 Driver/Passenger of a vehicle 106
5.3 Unit is not allowed to enter a vehicle 106
5.4 Unit in vehicle? 107
5.5 Vehicle only moves when unit has entered 107
5.6 Group already in vehicle when the mission begins 108
5.7 Let a unit get in and get out of a vehicle 108
5.8 Speed of a unit 108
5.9 Display the speed of a unit 108

5.10 Unit keeps standing 109
5.11 Getting a unit started 109
5.12 Unit is moving to its destination 110
5.13 Running patrol, drive or fly 110
5.14 Escape behaviour of a unit or a group 110
5.15 Moving units, objects, triggers and markers 111
5.16 Placing objects higher or lower 111
5.17 The height of a unit 112
5.18 Accurate helicopter landing 112
5.19 Unit is moving into a building 112
5.20 Unit is leaving / joining a group 113

9

5.21 Assigning a target to a unit 113
5.22 Unit turns to another Unit 114
5.23 Unit is selecting weapon 114
5.24 Inflict damage or heal a unit 114
5.25 Defining a death zone 115
5.26 Checking of an area 115
5.27 Bring about a certain behaviour of a unit in an area 115
5.28 Save or load a unit status 116
5.29 Degree of familiarity of a unit 117
5.30 Friendly enemy 117
5.31 Friendly forces 118
5.32 The alert 119
5.33 Dead as condition 120
5.34 Distance of two units or objects 120
5.35 Allocate a flag to a flagstaff 120
5.36 Burning fire 121
5.37 Add or remove switchable units 121
5.38 Read out and display player side, - name, -type 121
5.39 Oppress player input 121
5.40 Force the map on the screen 121
5.41 Adjusting distance of view 122
5.42 Adjust the weather 122
5.43 Adjusting date and time of day 123
5.44 Slow motion or time sprint 123
5.45 Generating units and objects 124
5.46 Generate flares, smoke and explosions 126
5.47 Delete units and objects 127
5.48 Adjusting radio menu 127
5.49 Allocate a call sign to a group 128
5.50 Send a radio message 129
5.51 Creating sound 129
5.52 Using own sounds 130
5.53 Set Identity 134
5.54 Mimics 135
5.55 The action order 136
5.56 The animation command 139
5.57 Disable AI units 144
5.58 SetVelocity 144
5.59 The information text 144
5.60 Units keeps lying or keeps standing 144
5.61 Using ID´s 145
5.62 Placing units inside of a building 148
5.63 Unit is moving to desired house position 153

10

5.64 Getting position displayed 153
5.65 The Eventhandler 155
5.66 Different text displays 157
5.67 Stringtable basic values 158
5.68 Create waypoints 159
5.69 Create trigger 160
5.70 Create marker 162
5.71 All about vehicles 165
5.72 Create a light source 167
5.73 Create dust 167
5.74 Create smoke 168
5.75 Create fire 169
5.76 Assigning ranks 171
5.77 Unit using binoculars 172
5.78 Assigning a unit to a vehicle seat 172
5.79 Allocate a unit to a team 173
5.80 Unit is giving out a command 174
5.81 Has a unit recieved damage? 174
5.82 The air traffic 175
5.83 Decrease grass details 176
5.84 Place sloped objects 176
5.85 Lock or unlock missions 177
5.86 Empty searchlight with light 177

Chapter 6: The Missions Specials

6.1 The paratroopers 179
6.2 The GPS-System 180
6.3 The action menu entry 181
6.4 The backpack 181
6.5 Random positions 185
6.6 The mapclick 187
6.7 The artillery 189
6.8 Deleting killed units and vehicles 194
6.9 Suppressing gaming speed constantly 195

6.10 The bullet mode 196
6.11 Track down enemy units 197
6.12 The air strike 198
6.13 The air vehicle creator 201
6.14 The searchlight 203
6.15 The time counter 204
6.16 The house patrol script 205
6.17 The mine script 208
6.18 The vehicle transport script 209

11

6.19 The seagull script 213
6.20 The insect script 215
6.21 The saboteur 216
6.22 The spotter 217
6.23 Unit is capitulating itself 218
6.24 The teleport 221
6.25 The persecution script 222

Chapter 7: Multiplayer

7.1 The Multiplayer Mission 224
7.2 The respawn points 224
7.3 Flexible respawn points 225
7.4 The MP-Description.ext 226
7.5 The different ways to respawn 227
7.6 The Deathmatch 227
7.7 Defining the Multiplayer area 228
7.8 Time and Rating 229
7.9 Assigning and displaying scores 231

7.10 Time display 232
7.11 The class header 233
7.12 The respawn dialog 233
7.13 Stringtable MP basic values 234
7.14 The vehicle respawn 235
7.15 Mr-Murray´s vehicle respawn 236
7.16 Flag basic informations 238
7.17 Capture the flag 240
7.18 The public variable 246
7.19 Preface information for MP Missions 247
7.20 The controlling commands 249
7.21 The armament within Multiplayer 250
7.22 Text messages for a specific player 251
7.23 Join In Progress (JIP) 252

Chapter 8: Cam Scripting

8.1 Controlling the Camera 255
8.2 The Camera Coordinates 256
8.3 Creating A Camera 257
8.4 The First Scene 258
8.5 Patching the Camera On a Vehicle/Unit 260
8.6 Text and Blending Effects 261
8.7 Camera Effects 262
8.8 Preload Objects and Positions 262

12

13

8.9 Executing Map Animation 263

Chapter 9: Scripting

9.1 The variable 265
9.2 Logical values 266
9.3 Logical operators 267
9.4 The While-Do-Loop 268
9.5 The counter 268
9.6 If-Then-Else 268
9.7 The delay 269
9.8 Random 269
9.9 WaitUntil 269

9.10 The brackets 270
9.11 The semicolon 271
9.12 The array 271
9.13 Basic knowledge about functions 274

Chapter 10: Dialogues

10.1 What actually is a dialog? 279
10.2 Base definitions (constants) 280
10.3 Basic classes and subclasses 283
10.4 The font styles 286
10.5 Fading in a graphic .287
10.6 Fading in a text 288
10.7 Fading scope views 289
10.8 An own tactical map 291
10.9 Defining a button 292

10.10 Defining a Frame 294
10.11 The video sequence 297

Chapter 11: General Informations

11.1 Own profile 299
11.2 The ArmA Cheats 301
11.3 The MOD-Folder 302
11.4 The use of addons 303
11.5 The missions release 304
11.6 The ArmA.rpt 305
11.7 The Nato Alphabet 306
11.8 The ranks and their badges 307
11.9 The Squad.xml 308

11.10 The Start Parameters 311
11.11 Key combinations, tips and tricks 313

Keyword Index 314

Syntax Index 322

Imprint 332

14

Chapter 1
- The Beginning -

This chapter will serve to provide you with an overview and detailed perspective of the
user interface of the editor. It will also get you ready for the following chapters. With the
help of this chapter you will receive a detailed explanation of the main functions of the
editor to obtain positive results. The main functions of the editor are as follows.

1.1 The user interface 16
1.2 Adding units 20
1.3 Adding groups 26
1.4 Adding triggers 27
1.5 Adding waypoints 30
1.6 Synchronize 35
1.7 Adding markers 36
1.8 Rotating units and objects 39
1.9 Merging units and markers 39
1.10 Edit units with allocated waypoints 40

15

C
h

ap
ter

1

The user interface of the editor is quite manageable and very user friendly as you can see.
You have the possibility to choose and edit the individual areas and sub-menus by using
the mouse, arrow keys and F-Keys.

In the Intel box you can define different things like weather,
time of day, seasons and on which side the RACS (Resistance)
fights. Furthermore there are two input fields at the top of the
menu. In the first one you can enter a name for the mission and
in the input field below you can define a short description. You
can also set the weather at the beginning of the mission and
define in which way it will change during the run of the
mission. The fog is adjustable, irrespective of the weather. The
rain level and the brightness according to the different daytimes will change by adjusting
the seasons. The days in the summer are much longer than in the winter, like in real life.

Intel

Name of the mission
Description of the mission

Date and time

Weather forecast
Current weather

Current fog

Forecasted weather

Forecasted fog

Side of the RACS (Resistance)

16

1.1 - The user interface

F-Keys
Pressing the F-Keys (F1 - F6) enables one to enter the sub-menus. This section will give a
rough explanation of the different F-Keys, which will be explained individually and more
accurately later in this chapter.

17

C
h

ap
ter

1

1 Is needed to place units, vehicles, and objects
on the map and adjust them individually.

2 Contains two different features. At first it
enables you to place entire groups on the map
and furthermore it serves as a tool to connect
units and triggers with each other.

3 Triggers can be placed on the map by using the
F3-Key. The Triggers are both powerful and
flexible tools, which are needed for a number
of different actions. As an example, triggers can
be used to define the radio menu.

4 The F4-Key creates waypoints that will be
followed by groups or individual units.
Furthermore they will activate certain actions
at predefined places, dependent on the
definition.

5 Synchronization is a function that can be
overlooked quite easily even though it's a
useful function. It enables you to synchronize
waypoints and triggers with each other. For
example, a unit will not move to the next
waypoint until the trigger is activated.

6 The F6-Key opens the“Markers”sub-menu. The
markers provide a tactical view of the map, in
order to have a better overview over the
mission.

Mission
The first option, called "Mission", opens a sub-menu that contains several possibilities to
add special features to the mission. Each choice opens a new map. The first one is the
mission itself. The second one opens a new map to create the intro, and the third or fourth
ones open a new map to create the Outro - Win, or the Outro - Loose. It’s recommended
to use new maps for every single choice because it saves performance. And it also enables
a much better overview about the main map, because the intro and the outro units are
not located on the same map.

There is a further advantage, if the player doesn't like to watch the intro until it ends every
time he plays; he just needs to click it away by pressing the space bar. If the intro was
produced on the main-map, this would not be possible for him and he would have to see
the sequence until the end every time, which can cause him to lose motivation quickly.

Load
With the option “Load”, the mission will be loaded out of its destination folder in the
ArmA© main directory. To do this, the mission needs to be saved into following directory.

C:\Files\ArmA\User\Missions

This folder is empty when the game gets installed for the first time. Every time the player
saves a new mission, the game creates a folder with its name in this directory. A final
edited mission that has been selected in the ArmA-main menu to play, are not able to
load in the editor again. This is because the game converts the mission folder into a PBO-
File and so it’s not possible to open this mission in the editor again. To do this, a special
PBO-Tool is needed.

Merge
Merging is similar to importing. Merging makes it possible to import other missions or
units, markers, objects, triggers and waypoints from another map into the current mission.
By using the Merge-Button everything on the map will get imported, but not the
contents of the mission folder.

The merging is quite useful if the player is editing a very complex mission that needs a lot
of time to load. If the player wants to add some prefabricated combinations, he just needs
to have them saved as their own file – which can be brought into the current scene using
the merge function.

Complex sceneries don’t need to be rebuilt every time again. This saves on performance
and gives some more motivation to the player when he uses several sub-missions as a
form of a database.

18

Save
Pressing the Save-Button in the editor menu will save the mission. Here you can decide
the method of how you want to save the mission, either as an editor mission or as a final
edited Multiplayer or Singleplayer mission. The editor mission will be saved in the
directory C:\Files\ArmA\Missions. The final edited MP or SP Missions will be saved in the
main directory. The Multiplayer missions will be saved in the folder“MP-Missions”and the
singleplayer missions will be saved in the folder“Missions”. You can see an example on the
picture below. There you can see the folder missions in your files.

Clear
Pressing the Clear-Button clears the map. It will set back into the default status. All things
on the map get deleted. Only the missions folder still exists.

Show IDs
By pressing the Show IDs-Button, all objects on the map will be displayed. Every single
object has a separate ID that it can be contacted with. It enables the user to do different
things to an object. You will be able to destroy it or check whether it's still alive or not.

Show Textures
This option enables all textures to be displayed on the map. Every variation, with
displayed textures or without, has certain advantages and disadvantages while editing.
Finally, every user needs to decide for himself how to best edit a mission.

Preview
By pressing the Preview-Button the user can enter the mission to get a first impression
of it. He also has the possibility to test several things.

Continue
Pressing the Continue-Button enables the user to go back into the last preview. But it
only contains the last version of the mission. Current changes are not visible at this time.

Exit
To close the editor and return to the main menu, just click on the Exit-Button.

19

C
h

ap
ter

1

The sub-menu of the units is displayed by pressing F1 or mouse clicking on the button
“Units (F1)”. To place the unit, just double-click on the map and the unit menu appears. The
user has many possibilities to create his favorite unit. It also enables the user place units,
vehicles, helicopters, airplanes, objects, and game logic.

Side Choice of side
East East Units
West West Units
Independent Resistance Units
Civilian Civilian Units
Empty Empty Vehicles
Logic Game Logic

Class Kind of units
Air Helicopter, Airplane
Ammo Weapons, Ammo
Armored Armored Vehicles
Car Cars, Motorbikes
Men Soldiers
Mines Mines
Objects Static Objects
Ship Ships
Sounds Sounds
Static Guns, Machineguns
Support Support-Trucks

Control - Player or Playable
With this menu the user needs to decide what kind of character he wants to play. Maybe
the user wants to play as this unit; or should this unit be playable or not playable (AI).

Playable units are neededwhile creatingmulti-playermissions, that’s important because
later in the game, every playermust have the ability tomake a choice between different
units. If the user creates a single player mission with playable units, so they are needed if
the gamer wants to use the character switch. The player is able to switch between the
units to bring them to different positions.

Player The player himself
Playable Playable unit
Non Playable Not playable unit

20

1.2 - Adding units (1)

The player also has the additional possibility to decide which seat he wants to use in the
vehicle and set it immediately.

Player as Driver
Player as Pilot

Player as Gunner

Vehicle lock - Vehicle settings

Default
Locked

Unlocked

To adjust this by an external script or by using Initialization box use the following syntax:

NNaammee lloocckk ttrruuee - Vehicle locked
NNaammee lloocckk ffaallssee - Vehicle unlocked

Rank - Rank of the respective unit
The rank of each unit can be set here. The unit with the highest rank will be the leader of
the group automatically.

Private
Corporal
Sergeant

Lieutenant
Captain

Major
Colonel

As follows you can see the syntax to set the rank of a unit:

Player setRank "Sergeant "

Unit - Class of unit
After adjusting the units, whether it’s a soldier or a vehicle, the specification of the class
is possible here. The choice in the sub-menu is always up to the class decision. The user
has several choices in the section "Men" because he can make a decision between
different types of soldiers – from the assault rifle soldier to the grenadier, on up to the
sniper; these are only a few of the types available. The same is possible with the vehicles.

21

C
h

ap
ter 1

Special - Particularities of a unit
This option enables the adjustment of several settings that often get ignored by the user.
It also enables the user to start the mission while flying a helicopter or airplane.

None If the user places a unit on the map and sets the option "None",
then this unit will move to the leader’s position even when she’s
far away from the leader’s position.

In Formation If a unit has been placed on the map as a part of a group,
with the option "In Formation", then the game places this
unit next to the position of the leader.

In Cargo When the player sets a group on the map, with the option "In Cargo",
and one of its units is a vehicle (this unit must not be the leader)
then all units of this group will sit in the vehicle when the
mission begins.

Flying All flying units are already in the air (flying) when the mission
begins.

Name - Name of the unit
The name of the unit or the object will be displayed here. This is very important to
communicating with this unit while working with scripts, triggers and waypoints.

Skill - Skills of the unit
The abilities of a unit are defined here. This option allows setting the level of skill between
0 and 1. The level 0 means silly and 1 means very good.

Name1 setSkill 0.8

Name1 setUnitAbility 0.6

It’s also possible to set a random skill. To do this, following syntax needs to be defined in
the initialization box (Init box) of the unit:

this setSkill (random 0.6)

Now the unit will get a random skill between 0 and 0.6.

22

Azimut - Direction of view of an unit
One can adjust a rough direction of view by clicking somewhere in the cycle. So far the
direction has been set, so it will be defined as degrees right in the same second. The values
of the direction are as same as in real life from 0 – 360 degrees. So far the be wished
direction was set, so the unit will be placed on the map with their respective direction.

If the user wants to spin the unit around after pressing OK because the units direction is
still not the right one, so he can adjust the direction by using the left mouse button and
shift-key. To do this, don’t double-click on the map to enter the menu, just click the left
mouse button to select the respective unit. Then press and hold the Shift-Key. Now move
the mouse to change the direction of view.

To spin several units or objects, the same principle is applied. To do this, all units needing
direction change need to be selected by the user. To change the direction, the mouse
only needs to get moved moved while pressing the left mouse-button and holding shift.

Another possibility to spin a unit in a sequence would be:

Name setDir Value

Name setFormDir Value

The value can be copied out of the sub-menu of "units" by pressing Ctrl+C. Then paste it
into the script (instead of North).

Initialization - The initialization-line
Every unit and every object has an initialization line. Orders that are located there will be
executed by the game immediately. Scripts can be executed from here or a random skil
syntax which can be defined here as well as explained above in Skills. It’s generally always
recommended to set an additional option called Init.sqs in the mission’s folder. This script
contains the initialization file of the mission. The Init.sqs will be executed by the game
without a predefined syntax. A closer explanation about the init.sqs can be found in
Chapter 2.5 – The Init.sqs. Make sure that all commands are divided with a ;.

It´s also possible to define an entry in the init line of a unit while a mission is running. To
do this one only needs to use a setvehicleInit-order, and to call it processInitCommands.

Player setVehicleInit "Player say 'Sound1' "; processInitCommands;

Description - The information line
Names and descriptions of the unit can be typed into this line. This description will be
displayed if the unit is defined as a switchable unit, and the switch menu will open.

23

C
h

ap
ter 1

Health / Armor - The health status
The status of health and armor of a unit will be set by using the slide control. Injured units
can be placed on the map this way. Vehicles can also be used as wrecks if the armor is set
to zero. The value can be set between 0 and 1. 1 is fully damaged and 0 means no
damage. There is a further syntax available which will be defined in the unit submenu.

NNaammee sseettddaammmmaaggee 11

The unit, tank, or object would have an amount of damage of 1 and would be dead or
destroyed. This value can be reset by using the Syntax:

NNaammee sseettddaammmmaaggee 00

The unit would be reanimated or repaired again. Of course it’s possible to use interim
values. By using the value 0.5 the unit would not be repaired completely.

Support:
Support vehicles like fuel, ammunition, and repair trucks can get a value of 0 to 1. If the
value set to 0, then this vehicle will not to be used again to offer repair, refuel, or
ammunition support. The Syntax:

NNaammee sseettRReeppaaiirrCCaarrggoo 11
Reassigns a new repair-value to a repair truck.

Fuel - The fuel-status
The quantity of fuel of a vehicle is to set here. It’s possible to define it by syntax as well:

Name setfuel 0 - Empty fuel tank

Name setfuel 1 - Fuel tank is full

Support:

Name setFuelCargo 0.3 - Allocates a value of amount of fuel to a vehicle

Ammunition - The ammunition status
Adjust the amount of ammunition that a unit has at the start of a mission.

Support:

Name setAmmoCargo 0.7 - Allocates a value of amount of ammunition
to a vehicle.

24

Probability of presence
This option sets the probability of presence of a unit in percentage. If the slider is moved
to the middle, there is a 50% chance that the unit will appear on the map. This makes the
mission dynamic, because it’s not possible to know whether a unit is displayed on the
map or not.

Condition of presence
A unit will only be present on the map when a condition has been executed. This
condition is always checked by the game when the mission begins. If Cadetmode was set,
the unit will be displayed in the Cadetmode only.

Placement radius
When the mission begins, the unit will spawn in a random location within this radius.

Info-age - degree of familiarity
Info-age defines the degree of familiarity of a unit. This option tells what the player knows
about opposing units and how current this information is. The following selections are
available:

"ACTUAL" "5 MIN" "10 MIN" "15 MIN"

"30 MIN" "60 MIN" "120 MIN" "UNKNOWN"

It is also possible to define the info-age by using a syntax. This is what it would look like:

Player setTargetAge "10 MIN"

25

C
h

ap
ter 1

By pressing the 2 -Key the user will activate the sub-menu groups. It enables the user
to place whole groups on the map. After he decides which side to place units for, he can
then make a choice between infantry units, tanks or helicopter groups. This possibility
saves a lot of time, because not every unit needs to be placed on the map individually. The
groups are all predefined, but the user does have the ability to edit the group as he wants.
This makes it possible for him to add or remove single units. He can also change the
classes of each single unit.

Once you have decided on a side for the units, you have to make some selections. The
option "type" offers the type of units, such as infantry, tanks, or helicopter groups. By
using this option it is possible to set a whole group quite fast.

At the option Name, it’s possible to make a choice between 5 different types of groups.

East and West both have 5 different classes of infantry squads available for use.

Basic Squad - Merged infantry squads
Weapon Squad - Smaller Infantry squad
Special squad - Special Forces
Motorized Patrol - Infantry squad with UAC
Mechanized Squad - Infantry squad with APC

In the same menu as Infantry Squads, are Tank Platoons and Helicopter Squadrons.
If an air unit needs to be flying when the mission begins, the user needs to set the
formation to “Flying”.

The direction of view needs to be adjusted by setting the Azimut again.

26

1.3 - Adding groups (2)

The trigger can be used as an on/off switch or as a checking-tool. It also enables the user
to implement radio menus from Alpha to Juliet. Triggers and waypoints aren't that
different from each other. The trigger enables the user to activate or stop certain actions.
There is also the possibility to add sounds, music or other resources (such as video clips)
by using the sub-menu "Effects" on the trigger menu.

The user has the possibility to activate scripts or similar things when the character has
entered trigger area. When the character is leaving this area again, those scripts can be
deactivated again.

A trigger can also be used as a ruler when the user wants to place several units next to
each other. To do this the axis A needs to get the value 100 and the axis B needs to get
the value 1 for example.

Axis A /Axis B Size and area of the trigger

Angle Angle of the trigger

Ellipse/Rectangle Form of the surface

Once/Repeatedly One-or multiple-
activations

Activation by West
East
Resistance
Civillian
Gamelogic
Anybody
Radio A–J
Captured by West
Captured by East
Captured by Resistance

The way of activation

Present A trigger will activate its actions when a unit is entering this area.
An example: (Unit=East Activation=East).

Not present All actions will be disabled if this east unit is leaving the trigger
again.

Detected by Detected by west, east or civilians. Trigger will be activated if the
unit of the defined side is detected within the area of the trigger.

27

C
h

ap
ter 1

1.4 - Adding triggers (3)

Countdown/Timeout - Counter
Within this menu the user can set the time distance between a unit entering an activation
area, and the activation of that trigger. The possibility to add a minimum, middle, and a
maximum value to the timeout function can make the mission much more dynamic.
When all three values are defined, the activation of the trigger will happen at a random
time between the set values. If the minimum, middle and maximum values are all set to
the same value, the trigger will activate when the timer runs out.

Type:

None
Guarded by West
Guarded by East
Guarded by Independent
Switch
End 1 till End 6
Lose

Text - The trigger text
The user can enter a specific description of the trigger. The user needs to write the
description into the text box. This possibility enables better organization on the map,
especially if several triggers were used. The user mustn’t open every single trigger to get
the information about what each trigger does. Furthermore, the text for each radio
message is to be defined here. If the user creates more radio messages, then he can see
the messages on the radio individually.

For example:

Trigger 1: Activation: Radio Alpha
Text: Request Artillery

Trigger 2: Activation: Radio Bravo
Text: Request Support

Both of these lines of text would be displayed on the radio now. This enables a better
overview and orientation.

Name - The trigger name
To communicate with the triggers the user has to enter a name into the text box next to
"Name" - for example, if the user wants to move or delete it later. You can get more
information about moving and deleting triggers on the following page.

28

Condition - Activation condition
A condition is a powerful tool, which enables the trigger to check several things. The
trigger would be activated only if a condition was executed. A condition can be used in
many ways. It’s also possible to use both variants: Use of a variable or checking of a
condition.

Use of a variable
The trigger will be activated if a condition was executed first. If attack would be placed as
a variable into the OnActivation-Box, the trigger is waiting until this variable has been set
to true, to activate itself.

To set the variable “Attack” to true, it has to be defined in a trigger, waypoint or a script.
To do this following Syntax is needed:

Attack=true

To activate the syntax, “Attack” has to be set to “true” in the OnActivation-Box of the
trigger, waypoint, or written in a script. The action defined will be activated now.

Verifying a condition
Another possibility to check whether a condition was executed or not. A variable is a
condition that needs to be checked and executed as well. This means, that the condition
is checking the actions of a unit. For example: Is unit A still alive, is unit B sitting inside
Jeep1. That would look like this:

Condition: Player is sitting in Jeep1:

Player in Jeep1 or Vehicle Player == Jeep1

Condition : Soldier1 not alive:

Not alive Soldier1 or !(alive Soldier1)

On Activation
Nearly all actions that can be activated when the trigger gets executed are to be defined
here in this box (for example, the starting of a script or setting a condition on true etc.).
The user can enter nearly all Syntaxes that are available in ArmA©. But this option does
have its borders as well, and so sometimes it is better to use scripts. The use of scripts
helps the user stay more organized than having triggers all over the map.

29

C
h

ap
ter 1

On Deactivation
It’s also possible to activate a trigger when it actually gets deactivated. The following
example serves as an example of an entry in the action menu, as variant to explain what
it means. If the player enters a trigger area, then a further option, called "entry", will be
added to the action menu. This entry will be deleted when the player leaves the trigger.
To do this just enter:

oonn AAccttiivvaattiioonn:: IIDD==PPllaayyeerr aaddddAAccttiioonn [[""EEnnttrryy"",,""ssccrriipptt..ssqqss""]]
oonn DDeeaaccttiivvaattiioonn:: PPllaayyeerr rreemmoovveeAAccttiioonn IIDD

Move or delete triggers
When it’s needed, the user can move or delete a trigger. But to make sure that it works,
the trigger has to be equipped with a name first. That’s important to speak to the trigger
directly. The following syntax is needed:

TriggerName setPos getPos Name

The user can otherwise use coordinates. That syntax would look like this:

TriggerName setPos [x,y,z]

30

1.5 - Adding waypoints (4)

Waypoints are not only needed to set a
route where a unit shall move, the user
can also use a waypoint to set behavior,
formation, Combat mode and speed.

The waypoint can be similar to a trigger
in function.

When the unit reaches it's next
waypoint, code can be activated and
executed upon arrival.

But there are a lot more possibilities,
such as having sound effects or music
played at a predefined waypoint.

C
h

ap
ter 1

Select type - The actions
This is where you can select the differnt types of waypoint you wish to use for a unit on
the map.

Move
Destroy
Get in
Seek and destroy
Join
Join and lead
Get out
Cycle
Load
Unload
Transport unload
Hold
Sentry
Guard
Talk
Scripted
Support
Get in next
Released

Clarify particularity
If the user allocates a waypoint to a unit with these conditions, then the unit will move to
this point and wait for enemy contact before she’s moving on to the next one.

Waypoint order
The player can get an overview about all waypoints by clicking this option. It's also
possible to change the sequence of waypoints in retrospect.

Description
This is the description of a waypoint. Descriptions will be shown in the Cadetmode only.
It makes playing for beginners easier, especially playing huge and complex missions.

For example: Destroy the target

31

Combat mode
The combat mode of a unit is defined here:

Never fire Blue
Hold fire Green
Hold fire, engage at will White
Open fire Yellow
Open fire, engage at will Red

To define these behaviors by script use following Syntax:

Name setCombatMode "Blue"

Behavior
To define the behaviour of a single unit or a whole group, the following options are
available:

Careless
Safe
Aware
Combat
Stealth

This behaviour is definable by script as well. The syntax is:

Name setBehaviour "Careless"

Formation
Special formations are needed on the battlefield while fighting in special situations. These
formations will be shown in the examples below. The group leader is always marked in green.

Columm Staggered Columm

Wedge Vee

32

Echelon Left Echelon Right

Line Delta Column (compact)

It’s also possible to set the formation of a unit by script or trigger. The syntax will be:

Name SetFormation "Line"

Speed
The speed of a single unit will be defined individually at every waypoint. It’s possible set
a unit to move fast to waypoint 1 and move slow to waypoint 2. There is a choice between
3 variants.

Limited / Normal / Full

And we have the possibility to define this in a script as well. The syntax is:

Name setSpeedMode "Limited"

Placement radius
The placement radius of a waypoint offers more dynamics to the game, because the
waypoint will be set at random to a location within this radius. This means, that when the
user enters the value 100 for example, the game will set this waypoint within a radius of
100 meters.

Timeout
The delay until the trigger executes its actions, in seconds. If the minimum, middle and
maximum values are all set to the same value, the trigger will activate when the timer
runs out. But if the values are different from each other then the trigger will activate its
actions randomly.

Min Minimum time until activation
Max Maximum time until activation
Mid Middle value

33

C
h

ap
ter 1

The use of random values adds a lot of excitement to the game, because the user doesn’t
know when the unit will reach its destination. The user has a much more dynamic mission
by combining placement radius and condition of presence, because the user will no
longer be able to say whether the unit exists or not, or which place she’s moving to and
finally when will she will arrive. Even dynamic missions have a high rate of suspense and
this makes the missions much more replayable. ArmA© has the best conditions to create
missions as dynamically as possible.

Condition
The use of a condition allows a waypoint to change its status depending on whether the
condition is true or not. Using a condition makes it possible to set a waypoint to "stand
by" or to let it check something. That waypoint would be activated when the condition is
true, but if the condition has not been met, the waypoint will remain inactive. The use of
a condition has been explained in sub-section Chapter 1.4 – Adding Triggers.

On Activation
In this line it’s possible to define everything that shall be executed when the unit has
reached a waypoint (e.g. starting scripts or setting variables to true etc.) It enables the
user to enter every syntax that is compatible with ArmA©. It has its borders as well, so the
user should use scripts sometimes. Scripts just help keep the mission editor clean by
keeping the code in external files.

Script
This line enables the user to use code, which would only be used in scripts.

Show Waypoint
It’s possible to show or hide waypoints. The user can define here whether they are only
visible in Cadet Mode, general, or not visible.

Never Show

Show in Cadet Mode

Always Show

Join and lead
It’s possible to bring several groups together. This is possible at any point on the map as
well. Every single unit gets its own waypoint somewhere on the map. The first one should
be defined as Join and the other one as Join And Lead. Both waypoints only need
synchronization now. The user has to press the 5-Key to do this. Now both waypoints
get synchronized with each other. If both units reach their destinations and are still alive,

34

they will come together as one group now. It will only work if the groups are not too big.
ArmA© allows up to 144 units to a group including their leaders.

The option “Synchronize” offers the possibility to connect waypoints with waypoints or
waypoints with triggers. It enables the units to remain in the same formations and the
user does not have to use too many variables.

You can see 2 units in the picture below. Both units are coming from different directions
but they have the same target. Unit 1 has to wait at its waypoint until unit 2 reaches its
waypoint. To do that, the user has to press the 5-Key to choose synchronize mode.
Then, the user needs to click and hold on the waypoint 1 by using the left mouse button;
pulling the mouse from waypoint 1 to waypoint 2 creates a blue line. It’s important to
hold the left mouse button while doing that. When finished, a blue line connects both
waypoints with each other. When unit 1 arrives at their waypoint, they will wait there until
unit 2 arrives at their destination.

35

C
h

ap
ter 1

1.6 - Synchronize (5)

36

The trigger-waypoint combination works the same way. The groups will only move on
when the trigger is executed. It’s not necessary to allocate a variable to the unit at the
waypoint (like Grp1go for example). Enter the command Grp1go=true into the
OnActivation box of the trigger so that the group runs forward if the trigger is executed.

It doesn’t make any difference whether the trigger is executed by an object or radio. The
5-Variant is much faster and easier to handle.

Three groups and a radio trigger will get synchronized with each other in the picture
below. If all 3 groups have reached their positions the user only has to give the order to
attack by using Radio 0-0-1. The units will move to the next position, the target.

The markers are necessary to create a tactical view on the map. The markers show the
player the course of the mission, the targets, and more information which makes the
mission more interesting. It enables the user to get a better overview over the whole
mission. It’s necessary to give a name to each marker because those markers can be linked
into the briefing with their positions on the map. If the player clicks on a link in the briefing
the crosshair will move to the position of the marker on the map.

1.7 - Adding markers (6)

Name
The name of the marker will be entered in this box, which will be needed later for the link
with the briefing (to move the crosshair over the map by clicking on a link in the briefing
text). It’s also needed to move markers from one position to another or change them to
another symbol.

The kinds of markers
There are 3 different ways to set a marker on the map. The first one is the single icon. The
second one is a rectangle and the last one is a cycle. With the last two choices it’s possible
to mark whole enemy or friendly areas.

Color
Markers can be several colors. The following colors are available:

Red, black, green, blue, yellow and white

Symbol
Here is an overview of the different tactical signs with their descriptions:

C
h

ap
ter 1

37

Head- Command AirTeam Infantry Mainten- Light Heavy Supply Town Vehicle
quarter Team Team ance Team Team Team Team

Move Defend Attack Depot Camp Fire Salvage Repair Supply Destroyed
Mission Vehicle

Pick Up Marker Join End Unknown Warning Empty

Start Objective Destroy Flag Arrow Dot Empty

It's possible to create a much more complex map by combining area markers
(Ellipse/Rectangle) with tactical signs. Here you can see a list with all markers which are
selectable by default in the game. The following marker names are to be used as class
names as well with the exception of Objective. The class name of Objective was defined
as Flag by BIS.

Axis A/Axis B
The user can define the size of the marker here.

Angle
The user can define the angle of the marker here.

Text
To make the description of the marker visible on the map, the text needs to be entered
in this box. For example: Target Alpha. It’s possible to set the marker as the name of the
player or the unit by using following syntax:

"S1M" setMarkerText Name S1

The game automatically selects the player name of the unit that is named S1.

Dynamic Positions
If you place several markers on the map and connect them with F2 (see Chapter 1.9)
with a unit, so this unit will always be spawned on another position each time when the
mission gets started.

Move or delete a marker
It’s possible to make several changes to the markers. The user can move, delete or change
the symbol while the game is running. The execution of a missions target shall serve as
an example here. So it would be possible to delete the marker or change the color of the
respective marker from red to green.

A marker needs to be named first. To explain the following syntax examples, the marker
will get the name Marker1. Now there are lots of possibilities to communicate with the
marker. One can do this by using waypoints, triggers or even scripts. To do this, the
following syntaxes can be used:

38

Objective (Flag)
Flag1
Dot
Destroy
Start
End
Warning
Join
PickUp
Unknown
Marker

Arrow
Empty
Select
Vehicle
Defend
Move
Attack
Headquarters
Depot
Camp
Town

SalvageVehicle
RepairVehicle
SupplyVehicle
DestroyedVehicle
MaintenanceTeam
CommandTeam
SupplyTeam
InfantryTeam
LightTeam
HeavyTeam
AirTeam
FireMission

Marker will set to position [x,y]:

"Marker1" setMarkerPos [x,y]

Marker will set to position from Name:

"Marker1" setMarkerPos getPos Name

Marker will be set to position of Marker2:

"Marker1" setMarkerPos getMarkerPos "Marker2"

Defines kind and style of the marker:

"Marker1" setMarkerType "Start"

Changing the color of the marker:

"Marker1" setMarkerColor "ColorBlue"

Changing the size of the marker in [height, width]:

"Marker1" setMarkerSize [2,4]

Deleting the marker:

deleteMarker "Marker1"

To twist whole groups, objects or single units it’s necessary to select them first. Then the
user needs to press the Shift-Key, click and hold the Left Mouse Button while moving
the crosshair by using the mouse until the object is turned towards the desired direction.
It’s possible to turn more than one object, unit or group by selecting all units on the map
that need to be turned.

In the editor it’s possible to bring single units to whole groups together. It’s also possible
to divide them from each other again. To do this the user has to select the section “Groups”
by pressing the F2-Key. Then the units need to be selected by clicking and holding the left
mouse button while moving the mouse. The same method is used to divide a group into
its single units. The user only has to click into an empty space on the map.

Furthermore, it's possible to combine a unit or an object with a trigger to make sure that

39

C
h

ap
ter 1

1.8 - Rotating units and objects

1.9 - Merging units and markers

this trigger will only be executed by this
unit or object. In the left hand picture
you can see how a unit will be combined
with a group, and on the right picture
one can see that a trigger was placed on
the map which was used by a vehicle.

This is possible now with units and markers. The special thing in this case is that one can
now assign several random positions to the unit and the object. If the unit is connected
now with all 3 markers, the unit will get respawned on one of these markers each time
when the mission begins. One doesn’t know where he will be respawned. This option will
save a script and make a mission much more dynamic.

If a unit already has a waypoint allocated to it, then the user will notice that the waypoint
menu always opens after double-click, but not the unit menu.

To edit the unit after it already has a waypoint allocated, the user has to press the Shift-
Key while double-clicking on the unit. Then the unit menu will appear.

40

1.10 - Edit units with allocated waypoints

Chapter 2
- The Files -

After being introduced to the user interface in Chapter 1, this chapter will lead you
another level down into the system of the game. I will explain to you the individual files
which are important when creating a mission. Important information will be saved and
configured here.

2.1 The missions folder 42
2.2 The Mission.sqm 43
2.3 The Description.ext 48
2.4 The Stringtable.csv 51
2.5 The Init.sqs 53
2.6 The Script (.sqs) 54
2.7 The Function (.sqf) 54
2.8 The Paa-Format 55
2.9 The PBO 56
2.10 The sound files 56
2.11 The Lip-Files 57
2.12 The Overview 58
2.13 The Briefing 59

41

C
h

ap
ter 2

The missions folder contains all important files which are needed for a mission. It’s
necessary to create more folders to stay organized. So, it is recommended to create one
folder for every file-type individually. For example: music, scripts, sceneries, pictures and
so on. It’s also important to write the data types in lowercase letters. On the picture below
you can see a final edited missions folder:

As one can see in the example above, this folder contains all important files which are
needed for a mission. Furthermore you will have a better overview over your files. The
filenames in this example are all predefined and not variable! The title image and the
folder names are the only ones which can be named differently from the other files. The
file-types are explained here:

Mission.sqm Mission coordinates
Description.ext Mission configurations

(Music, Sound, Weapons, Identity, Resources etc.)
Stringtable.csv Enables the user to display text by a shortcut only
Briefing.html Contains the briefing text
Overview.html Mission info in missions selection menu
Title.paa Overview image

Different briefing files are needed to display the briefings in several languages. But if one
wants to create his mission in one language only, he only has to use the briefing.html. It
doesn't matter in which language the briefing file is defined. You can get more
information in this chapter, in the sub area The Briefing.html. It’s up to the player how
the following folders will be named

Music For music files
Sound For sound files (e.g. Languages, Effects)
Scripts For scripts (.sqs)
Scenes For the cut-scenes (e.g. Intro, Outro etc..)
Function For the functions (.sqf)
Pictures For the images (e.g. Title.paa)

If one wants to open a file out of the sub-folders, the user only needs to define
the respective folder in the syntax, backslash and then the respective filename.
E.g. to run a script:

[] exec “scripts\script.sqs“

42

2.1 - The missions folder

The Mission.sqm contains all important coordinates which display the objects, units,
triggers, waypoints and markers on the map, so it is the most important file in the mission.
Furthermore there are several pieces of information located at the top of the Mission.sqm
file such as additional add-ons or the mission name, weather and the time of day which
are defined in the intel box in the editor.

These explanations might be a little difficult to understand first, but they shouldn’t deter
one from editing his or her own missions. The player does not have to know every single
part of the Mission.sqm, but it’s quite useful to know what the options represent.

The first part
On the following page one can see the beginning area of the Mission.sqm in the section
"Class Mission" which is located in the top of the mission.sqm script. The used add-ons
are listed first. These add-ons are original ArmA-Addons.

Attention! When the mission begins, if an external add-on is loaded which has an
improperly configured Config.cpp, it might happen that this add-on will be registered in
this list although it will not be used in the mission. But it’s possible to mark and delete it
(The Mission.sqm needs to be opened with the Notepad text editor).

The problem begins if another player wants to play this mission and hasn’t installed this
external add-on. The mission will not be able to start, and the mission download was for
nothing. This problem happened many times in Operation Flashpoint®. The player who
does not know much about editing will get frustrated quite fast and will download
another mission.

Following the Addons is the class Intel which also contains:

Briefing name

Resistance settings

Starting weather

Forcasted weather

Forcasted fog

Distance of view

Date

Time of day

43

addOns[]=
{

"cacharacters",
"sara",

};
addOnsAuto[]=
{

"cacharacters",
"sara"

};
randomSeed=8635907;
class Intel
{

briefingName="@STR_M11_Name";
resistanceWest=0.000000;
startWeather=0.000000;
forecastWeather=0.000000;
forecastFog=0.375187;
viewDistance=1000.000000;
month=6;
day=2;
hour=3;
minute=50;

};

C
h

ap
ter

2

2.2 - The Mission.sqm

Next to the Class Mission are the Class Intro, Class OutroWin and Class OutroLose,
which are built same as Class Mission. The units, waypoints and so on for the respective
sequences are defined there.

It’s possible to make changes directly in the mission.sqm, but its quite important to make
changes correctly. If the player wants to test the mission later in the editor, it needs to be
re-loaded to use the updated mission.sqm

If the game is crashing down, there might be a mistake in the script. It is quite useful to
make a backup of the original Mission.sqm to make sure that a working version is still
available.

Units- and object classes
The sub areas Class Groups and Class Vehicles are located in the main Class Mission. In
these sub areas, the related units, objects and waypoints are defined:

As you can see all information for the unit named S1 is defined here. You can see the
elucidation of the concept here:

Items=1 Display the numbers of items of the Class Groups.
Number of the total groups of all sides of a map.

Class Item0 Is the group 0, or the first group. The next group would be
named Class Item1

Side The side of the respective group. Even a single unit will be
defined as a group!

Class vehicles Explains to the user that it is a vehicle
Items=1 The number of items (units) of the group Class Item0

44

class Groups
{
items=22;
class Item0
{

side="WEST";
class Vehicles
{

items=1;
class Item0
{

position[]={7973.895020,4.460081,9351.659180};
id=0;
side="WEST";
vehicle="SoldierWB";
player="PLAYER COMMANDER";
leader=1;
rank="CORPORAL";
skill=0.200000;
text="aP";
init="this addWeapon ""binocular"";

};
};

};

Class Item0 Class Item0 is leader of the group Class Item0. The subordinated
soldier to the leader is Class Item1, the next one, Class Item2
and so on.

Presence Probability of presence (Not the player!)
Position YXZ-Coordinates of the player in order X ZY
Azimut Line of vision of the unit (definable value from 0 to 360)
ID ID of the unit
Side Respective side
Vehicle The type of the unit
Player Himself
Leader Says whether the unit is leader
Skill Ability of the unit (definable value from 0 to 1)
Health Health status (definable value from 0 to 1)
Ammo Ammunition status (definable value from 0 to 1)
Text Name of the unit (Variable)
Init The init-line of the unit (needs a syntax to execute)

Waypoint classes
The waypoints are organized into their respective groups. This class is similar to the units,
but different in composition.

As one can see, all of the information for each waypoint is defined here, so each waypoint
looks different from another. It is up to the player how to define them. Explanation:

Items=1 Displays the numbers of items of the Class Waypoints, this is the
number of waypoints in the group.

Class Item0 Class Item0 is the first waypoint. The second waypoint would be
named Class Item1, the next would be Class Item2 aso.

45

class Waypoints
{
items=1;
class Item0
{

position[]={7970.289551,4.731988,9346.483398};
placement=50.000000;
CombatMode="RED";
Speed="FULL";
combat="COMBAT";
description="Hold this position!";
expActiv="[] exec""scripts\script.sqs";
class Effects
{
timeoutMin=10.000000;
timeoutMid=3.000000;
timeoutMax=30.000000:
};
showWP="NEVER";

};
};

C
h

ap
ter

2

Position Coordinates of the waypoint, in order XZY.
Placement Is the random positioning-radius of the waypoint.
CombatMode The respective fight-mode of the group of this way-point.
Formation The respective formation of the group of this waypoint.
Speed The speed of the group of this waypoint.
Combat The respective behavior of the group at this waypoint.
Description The description will be displayed when the waypoint is shown

in-game.
ExpActiv The On Activation field, which will be executed when the trigger

is activated. In this example, a script with the name script.sqs
will be executed from here.

TimeOutMin The minimum time to execute the waypoint.
TimeOutMid The middle time to execute the waypoint.
TimeOutMax The maximum time to execute the waypoint.
ShowWP Explains whether the waypoint will be displayed in the game or not

No effects have been defined at this waypoint, these effects are explained in the trigger
classes.

Marker Classes
Their classes of the markers are located right behind the group and there respective
waypoints. All markers set on the map will be listed here. Here is an example:

The explanation of the points is shown here individually:

Items =1 Displays the number of items of the class marker. Therefore the
entire number of triggers on the map.

Class Item0 Class Item0 is the first trigger. The second trigger would be
called Class Item1, and the very next trigger would be called
Class Item2 and so on.

Position YXZ-Coordinates of the markers in the order of XYZ.

46

class Markers
{

items=28;
class Item0
{

position[]={2452.061035,0.760200,3673.595703};
name="TargetOne";
text="Objective Alpha";
type="Flag";
a=2.000000
b=2.000000
angle=0.100000

};
};

Name The name of the marker.
Text The description of the marker which will be displayed later on the map.
Type The type of the Marker. In this example, a cross-hair is displayed.
a The size of the marker in the X - direction.
b The size of the marker in Y - direction.
Angle The angle of the marker.

Trigger Classes
The class markers are actually right behind the group and object classes. All markers
which have been placed on the map will be displayed within this position of the script.
One can see an example below:

Items=1 Displays the number of items of the Class Sensors,therefore the
whole number of the triggers on the map.

Class Item0 Class Item0 is the first trigger. The second one would be named
Class Item1 and the very next - Class Item2 and so on.

a The size of the trigger in X-direction.
b The size of the trigger in Y-direction.
ActivationBy Activation by “WEST”.
TimeOutMin The minimum time to execute the trigger.
TimeOutMid The middle time to execute the trigger
TimeOutMax The maximum time to execute the trigger.
Age Unknown
Name The name of the trigger.
ExpCond The condition of the trigger. E.g. the Variable Var1
ExpActiv The activation field of the trigger, which will be activated when

the trigger is executed. In this example, a script named Script.sqs
will be activated here.

ExpDesactiv The deactivation field of the trigger. The trigger can be
deactivated here again. In this example, a script named
animation-end.sqs will be activated here.

47

C
h

ap
ter

2

class Sensors
{

items=53;
class Item0
{

position[]={8012.703613,6.300000,9301.049805};
a=100.000000;
b=100.000000;
activationBy="WEST";
timeoutMin=10.000000;
timeoutMid=3.000000;
timeoutMax=30.000000:
age="UNKNOWN";
name="DetectorOne";
expCond="Var1";
expActiv="[] exec ""scripts\script.sqs""";
expDesactiv="[] exec ""scripts\animation-end.sqs""";

};
};

The Description.ext is as important as the Mission.sqm for our mission. The specifications
of units and objects are not defined here, but the description will provide a lot of other
helpful information. It is important to define important things such as music, sounds,
respawn resources, weapons selectable from the briefing, accessories like the compass,
and several other things which are needed in the game.

The Description.ext has to be placed in the missions folder of the respective mission. To
do this one needs to open a text file and rename it Description.ext. It's quite important
to edit this file with Notepad (Text File Editor) or Notepad++ only. Never use Word or Excel!

The Description.ext will only be explained roughly. If you want to know more about
special possibilities of the Description.ext, just use the explanations in the different
chapters where these sub points are more thoroughly defined.

Mission Start Text Chapter 4.2
Distribution of points Chapter 4.4
Identities Chapter 5.53
Music Chapter 5.52
Sound Chapter 5.52
Respawn Chapter 7.2
Weapon selection in the briefing Chapter 3.6

It’s not necessary to implement all of these possibilities in the file, but this is up to the
mission. One has to use the ones which are needed for the mission, this saves not only a
lot of work, but it also enables one to avoid errors in the mission. It’s quite unnecessary
to use respawn in a single player mission for example.

Furthermore it is very important to make sure that all clasps { which were opened are
closed again }, otherwise ArmA© will crash promptly. There are other mistakes that will
make the game crash as well, so it’s quite important to work carefully.

To hide or make available additional mission accessories like the compass or the watch,
one only needs to do this by the parameter 1, or true, for active/visible or by using the
parameter 0, or false, for inactive / invisible.

One has the possibility to define special comments behind "//" or a semicolon. ArmA© will
ignore these marks. These marks are used to create special explanations inside a script to
make some things more understandable or to keep a script organized.

If changes were made in a script or the description which one has created, one needs to
save, and then restart the mission before the changes will take effect. If the game crashes
don’t lose your patience, this just requires more troubleshooting. It’s quite necessary to
define every paragraph individually, so one always knows which paragraph might be the
one which contains the error.

48

2.3 - The Description.ext

In the picture below, one can see how to define a Description.ext:

49

// ====================== Description.ext =====================>
Debriefing = 1;
OnloadIntro = 1;
OnLoadIntroTime = 1;
OnLoadMissionTime = 1;
Saving = 0;
// === Titlecut ==>
OnloadIntro= B I S T U D I O p r o u d l y p r e s e n t s
onLoadMission= A R M E D A S S A U L T
// === Points ==>
minScore=200
avgScore=2500
maxScore=6000
// === Missions Accessories =======================================>
ShowCompass = 1;
ShowMap = 1;
ShowGPS = 1;
ShowWatch = 1;
// === Respawn ===>
respawn=3;
respawn_delay=10;
// === Weapons ==>
class Weapons
{

class M4
{

count = 4;
};
class Javelin
{

count = 2;
};

};
// === Magazines ===>
class Magazines
{

class 20Rnd_556x45_Stanag
{

count = 10;
};
class Javelin
{

count = 6;
};

};
// === Music ==>
class CfgMusic

{tracks[]= { Track1,Track2};

class Track1
{

name = "Track1";
sound[] = {\music\track1.ogg, db+0, 1.0};

};
class Track2
{

name = "Track2";
sound[] = {\music\track2.ogg, db+0, 1.0};

};
};

C
h

ap
ter

2

50

// === Sounds ===>
class CfgSounds
{

sounds[]= {Sound1};
class Sound1
{

name = "Sound1";
sound[] = {\sounds\sound1.ogg, db+0, 1.0};

};
};

// === Radio ==>
class CfgRadio
{

sounds[] = { };
};

// === Environment ===>
class CfgSFX
{

sounds[] = {};
};
class CfgEnvSounds
{

sounds[] = {};
};

// === Identities ==>
class CfgIdentities
{

class MrMurray
{

name = "MrMurray";
face = "Face33";
glasses = "none";
speaker = "Dan";
pitch = 1.00;

};

class Memphisbelle
{

name = "Memphisbelle";
face = "Face10";
glasses = "none";
speaker = "Howard";
pitch = 1.00;

};

class Dan
{

name = "Dan";
face = "Face22";
glasses = "none";
speaker = "Russell";
pitch = 1.00;

};

};

// End Of File

The Stringtable.csv is needed by the game to display different text variables which were
defined by the user. It enables the player to define one or several languages in the
mission. This file always should be used by the text editor but Windows always tries to
use Excel as default program.

If one wants to edit the Stringtable.csv, the user has to take care for several things. The
head needs to be defined first. The head also contains the used languages. It’s very
important to make sure that the different languages are separated by commas
individually.

LANGUAGE,English,German,Czech,Notes

The single languages will be separated by commas and marked with " " in every line
individually. You can see an example below:

STR_Titel,"Night Patrol", "Nacht Patrouille", "...", MissionName

One can see a very good example here. The address at the beginning is defined with
STR_Title, the languages are following, and at the end of the line is a description which
will explain what the current line represents. The Syntax “STR_" is the very first part one
has to write. The word Title behind is only a variable which can be freely defined by the
user. You can see an example here:

STR_Mission_1,"Hold Position!", "Position halten!", "…", MissionText1

If one wants to make the text displayed at the beginning of the mission the following
Syntax is needed:

onLoadMission=$STR_Titel;

The Syntax STR_Title can be used as an individual address, which has to be entered if
one wants to implement text into the mission. That text would then be displayed in the
selected and predefined language. The sign @ in front of the Syntax STR_ is used in the
editor only while editing a trigger or waypoint, but in the config or in the description.ext,
the sign $ has to be used.

Calling text out of the editor: @STR_Titel
Out of the description or the config: $STR_Titel

Below, one can see an example of a waypoint displayed with text. This text has previously
been defined in the stringtable:

STR_Mission_1,"Hold Position!", "Position halten!", "…",MissionText1

51

C
h

ap
ter

2

2.4 - The Stringtable.csv

The following syntax has been written in the description box of the waypoint:

@STR_ Mission_1

As one can see the text will be displayed in the game:

It’s also possible to create a line-change in the text. This gives a better look to the text. To
make it, just enter \n

STR_Mission_1,"Hold Position\nand wait for orders!","","…",Missiontext1

In the picture below one can see an example:

In the example below, one can see a fragment of a stringtable out of an original Armed
Assault® mission. As one can see, there’s only one language defined.

52

LANGUAGE,English,Notes

STR_M11_Name,"Night Patrol",Mission Name
STR_M11_OnLoad,"You're on duty tonight",Onload
STR_M12_OnLoad,"Don´t sleep and keep your eyes open!",Onload

COMMENT, -------------- Main Mission -------------

STRCAMP_OBJSTART,Guard the military installation,
STRM_07an01,"Southern sector, Sahrani",prebriefing
STRM_07an02,"NATO base in La Riviere, Sahrani",prebriefing
STRM_07an03,"Near Paraiso - One hour later, Sahrani",prebriefing

The Init.sqs is a simple text-file in the “Missions” folder which can be regarded as the init
box of the player character. The game runs this file automatically when the mission starts.
The Init.sqs enables a better overview for the player because all entries are more clear
now. If all of the syntax is written in the initialization box in the unit menu, the player
would lose track of information. What should be written in this script? The user can enter
everything that he or she wants to run when the mission begins.

As one can see in the example below, the GPS-System, game-acceleration, and the hidden
mission targets 1-3 are predefined. The Teleporter.sqs, which is needed while editing, will
run at the beginning of the mission as well. It shall make editing easier for the user. It's
quite necessary to deactivate or remove the Teleporter.sqs later.

Of course it's possible to define a lot of more things than shown in the script above. For
example, the behavior of different units, the arming of units, variables, deleting the unit
status, loading several functions and so on. The shown Init.sqs should serve as an example
only. All written scripts needs to be defined by the user himself. The mission targets need
to be predefined and named as well.

Everything is written very clearly here as one can see. To keep the overview, ArmA© will
ignore everything that has been defined behind a semicolon.

53

;titlecut
titleCut [" ", "BLACK IN"]; titleFadeOut 4

;pre-load a function
SearchLight = compile preprocessFile "Searchlight.sqf";

;Identity
Player setIdentity "Mr-Murray";

;Hide mission tasks
"MZiel1" ObjStatus "Hidden";
"MZiel2" ObjStatus "Hidden";
"MZiel3" ObjStatus "Hidden";

;GPS-System
[] exec "marker.sqs";

;Choke game speed-up
[] exec "time.sqs";

;Edit script
;Important! It´s only for editing your mission. Later you have to delete it!!
;Teleport
[] exec "teleport.sqs";
;End

C
h

ap
ter

2

2.5 - The Init.sqs

A script is just a text-file in the missions folder which needs to be defined by the user if he
wants to execute special things in the mission. This section doesn’t explain the scripting,
it only explains the file and how it gets activated. For more information, see Chapter 9.

Every single script which is used in ArmA© has the same file-type as Operation Flashpoint®,
the xxxx.sqs. To create a script the user only has to create a text-file which just needs to
be renamed. Windows will recognize it as unknown file-type, but that is OK. If the user
wants to edit the script file, he only needs to open it with Notepad (text file editor).

You will learn more about scripts in the next Chapter and you also will see some examples
which will explain the most important things.

The Init.sqs is actually a script, which will be executed by the game automatically at the
beginning of the mission. There is no further syntax needed to run the Init.sqs. This is one
of the most important advantages of the Init.sqs. The Mission.sqs and the Description.ext
are scripts as well. Only the file-type and the function are different from the SQS-Script.

To execute a script out of another script with a trigger or waypoint, the following syntax
is needed:

[] exec "scripts\myscript.sqs"

or

this exec "scripts\myscript.sqs"

After the script has been executed the game runs through the script orders individually.
The script will end if the word exit has been defined at the end of the script.

One can compare a function with a script. In both cases orders were defined, but there are
small but fine differences. One can compare this with cars like a racing car and an old car.
But when one takes a deeper look into the details then one can certify that the racing car
is more modern than the old one.

There is one large difference between the two. The SQS-File has to be read out by the
game every time it is executed , while the SQF-File will be saved in the cache only one time
when the mission begins. Operation Flashpoint® used mostly SQS-Files, but it's
recommended to use SQF-Files within ArmA®.

Functions need to be used according to their type of the utilization. They should be a
good solution for everyone if they are written clearly and concise. The most important

2.6 - The Script

2.7 - The Function

54

thing is that functions should be reusable in other missions without the need to edit them
individually.

This should give the user the possibility to define a function only one time, e.g. calculating
a special vector, or it could be a solution in a very different problem and make editing
much easier for the user. Furthermore, it's better to define several small scripts than only
one long script. The performance is not the important thing. It’s more important to keep
the re-usability of the function.

The name is variable. The user can name it as he wants, but it's quite important to make
sure that the image file is named the same as it is used in the Overview.html. You can get
more information by reading the subtitle The Overview which is located in Chapter 2.12.

ArmA© also supports the JPG-Format as Operation Flashpoint® does. So it’s possible to
implement pictures with this format (e.g. Flags). It’s necessary to make sure that one is
using the correct image size. ArmA© only accepts image sizes that are squared, (preferably
powers of 4). There’re exceptions only in a few sections (e.g. the briefing and/or the
overview). Two-potency are values such as: 2, 4,8,16,32,64,128,256,... a.s.o. these formats
are shown as examples below:

64x64 128x128 128x64 256x256

To view and edit .paa and .pac files, a special tool is needed which can be found on the
ArmA© fan-sites or www.mr-murray.de.vu.

C
h

ap
ter

2

2.8 - The Paa-Format

55

The Paa-Format is just an image file-type like the more
known JPG-File type. ArmA© mostly uses the formats .paa
and/or .pac. Every single texture which is visible on the
objects in the game is of course, a texture file.

One can see a graphic named Title.paa which is placed in
the subtitle "the missions folder" in this chapter. This
graphic is meant for the overview only and is defined in the
Overview.html. One could see it now if the player would
select the mission out of single-player missions.

The PBO-File is a special file-type for all OFP©/ArmA© addons. This file contains all folders,
scripts, and images etc. which have been previously collected in the “Addon” folder or
“Mission”folder. One can compare PBO-Files with Zip- or Rar-Files, without decreasing the
file size.

If the player is saving his mission not as user defined mission but as SP or MP-Mission,
the game converts all these files to PBO-Files automatically. While the SP-Missions are
located in the directory “ArmA/Missions”, the MP-Missions are located in
“ArmA/MPMissions”.

Not only missions are saved as .pbo files, all add-ons which can be found in ArmA/OFP are
PBO-Files as well. One can read these files with special tools. The user has the ability to
open existing PBO´s to learn how the creator has built an add-on for example. But to learn
more about unzipping pbo´s, there's a lot more information available on ArmA© fan sites
where you also can get the necessary tools

Most of the sound files which are used in OFP©/ArmA© are Wss- or Ogg-Files. But it's also
possible to use wave files. The user only has to make sure that these files are not too large,
because maybe one day he wants to offer his missions as a download.

The Wss- or the Ogg-Files are exactly the right ones because these files have a minimum
file size to their sound length. This gives the possibility to the user to use several sound
files without receiving a mission which has too high of a file size. You will find a more
accurate explanation about implementing sound files in Chapter 5.52.

Sound files without music should be converted as mono files with a frequency of 44.100
kHz only. It’s important to convert the soundtracks as mono to use the distance effects.
If the user wants to add sounds to some objects, he can do so by using the syntax:

Name say "Soundname"

It would be audible on the whole map, and that would be quite unrealistic. So notice,
stereo sounds always become global.

There some helpful tools available to convert the files from one format into the other. You
only have to check the community sites to get such a tool or use the official BIS-Tools.

56

2.9 - The PBO

2.10 - The sound files

C
h

ap
ter

2

The Lip-Files are needed to move the lips of the character. Every single sound file which
is made for a language edition can be equipped with a lip file to move the lips of the
character while he’s talking.

There are only 3 values needed. The Frame rate of each single motion picture needs to be
fixed with the value 0.040 first. This value can be seen as time distance of every single
move. Each move of the lips now takes 0.040 seconds.

The degrees of opening needs to be set next. There are 4 different values possible from
0 to 3. The value 0 means closed while the value 3 means wide open.

Shown on the picture below is an example of a lip file for only 1 second. If one divides 1
second with the value 0.040, one will get the value 25. But only 20 lines are shown, and
that’s because the user has the possibility to define the lip file in that way as well.

For example beginning from the time 0.560, If one sets the Lip value 1 and makes a break
until time 0.720 and sets the value up to 2 then, so we have a break of 4 frames.

This example displays only one second of lip movement, so one can figure out how long
a script would be if one wants to define 10 or 15 seconds.

But there are several tools available which can define those scripts automatically. I will
give some links/sources at the end of this guide or check the community sites to get such
a tool.

57

frame = 0.040
0.000, 0
0.040, 1
0.080, 2
0.120, 3
0.160, 2
0.200, 1
0.240, 0
0.280, 1
0.320, 2
0.360, 1

additional -->

0.400, 0
0.440, 1
0.480, 3
0.520, 0
0.560, 1

4 Frame-Pauses
0.720, 2

2 Frame-Pauses
0.800, 1
0.840, 2
0.920, 1
1.000, 2

2.11 - The LIP-Files

The overview is a special feature which is shown in single-player missions only. One can
see it always as a short description of the mission. The overview and the picture which is
shown in the overview, both have to be defined in the Overview.html. One can see an
example on the picture below

The mission selection is located at the right side. The description and the image are seen
on the left side.

It’s quite necessary to have some experience with html, but because you are using this
guide such experiences are not really needed. If you really don’t have any idea how to
create an Overview.html just open an existing one and see how it was created. Just copy
the text, make the changes you want to make and add the image.

But if one wants to create his own, he just has to open the text editor and rename and save
it as Overview.html into his missions folder. You can use the example below which has
been copied from an original ArmA© mission.

58

<html>
<head>
<meta http-equiv="Content-Type"
content="text/html; charset=windows-1250">
<meta name="GENERATOR" content="VB">
<title>Overview</title>
</head>
<body bgcolor="#FFFFFF">

<!--Night watch-->

<p align="center"></p>

<p>
<! ---Mission info>
One more boring night watch. But it´s a warm and quiet night...
<! ---End of Mission info>
</p></body>
</html>

2.12 - The Overview

C
h

ap
ter

2

The briefing is a quite necessary feature as everyone already knows. To get the briefing to
be displayed on the map, there’s a Briefing.html needed which is located in the missions
folder. The Html-code is much more complex than the one of the overview. It also contains
much more information of the mission and the additional mission targets.

One can see the mission's description and the targets in the example below. The first
mission objective is already done and has been checked with a green hook. The other
objectives are still incomplete and so they remain unchecked. You can get more
information in Chapter 4.5 - The Mission Targets. First you will learn here how to create
a Briefing.html. Later you will understand the briefing much more

The easiest way to create a briefing is to copy an existing one from another mission. One
can edit the briefing to his own needs for his mission. Another easy way to create a
briefing is to get one of the briefing tools which are located on several Armed-Assault fan
sites, this would save the user much performance.

If one wants to open and edit an already existing briefing, the HTML-file only needs to be
opened with Notepad.

But I will try to explain to you the way how to create a briefing by yourself. As you can see,
there are the sections - plan and notes - located in the briefing. Both sections are actually
2 different pages which have been defined in only one file.

You will need the text editor again as you did while creating the“overview.html”. Open the
Notepad (text file editor) and write your briefing. Rename the text-file to "Briefing" and
save the file as Briefing.html into your missions folder.

59

2.13 - The Briefing

There are several briefing files which are all defined in several languages individually as
one can see in Chapter 2.1 - The Missions Folder located in this chapter. The default
Briefing.html will be displayed in English only, if its written in English. It's up to the user
to decide which language he uses. If the user wants to define the briefing in several
languages he has to keep to some rules and rename each briefing in the correct way.

Briefing.German.html
Overview.German.html
Briefing.France.html
Overview.France.html

The English briefing and overview would be named as follows:

Briefing.html
Overview.html

On the following pages is an example of a briefing.html which coincides with the picture
above. Only the notes named in the previous picture have been added. One might be
able to create his own briefing if he has a little time and patience. If you also use your
creativity and practice a while,you can define a well polished briefing. Beginners can get
some Html-Information here.

On the example below one can see a briefing source text:

60

<html>
<head>
<meta http-equiv="Content-Type"
content="text/html; charset=windows-1250">
<meta name="GENERATOR" content="vb">
<title>Briefing</title>
</head>
<body bgcolor="#FFFFFF">
<h2>

</h2>
<! --- The notes – Here you can write down your notes.>
<h6>
Damn that’s my first shooting lesson.

</h6>
<! --- End of Notes>
<hr>
<! --- The Mission plan – Here you can put down your mission description.>
<p>
Successfully finish weapon qualification.

61

Expert Marksman rifle qualification required to unlock sniper course in line 6.
</p>
<hr>
<! --- The Mission Tasks– Here you have to define the mission tasks.>
<p> Listen to your drill instructor until he lets you go.
</p><hr>
<p> Qualify with rifle in line 1.
</p><hr>
<p> Qualify with automatic weapon in line 2.
</p><hr>
<p> Qualify with granade launcher in line 3.
</p><hr>
<p> Familiarize with hand granades in line 4.
</p><hr>
<p> Qualify with M9 pistol in line 5.
</p><hr>

<! --- End of mission plan>
<! --- Debriefing – Write down your debriefing>
<hr>

<h2><p>Qualified</p></h2>

<p>

Now I'm a qualified infantryman.
</p>

<hr>

<h2><p>Title</p></h2>

<p></p>

<hr>

<h2><p>Title</p></h2>

<p></p>

<hr>

<h2><p>Title</p></h2>

<p></p>

<hr>

<h2><p>Title</p></h2>

<p></p>

<hr>

<h2><p>Give UP</p></h2>

<p>
I gave it up. The infantry training is boring.
</p>

<! --- END debriefing --->
</body>
</html>

C
h

ap
ter

2

The Html-Document starts with the tags <html> and <head>. The following tags are not
as important right now. The background color has to be defined by the tag <body
bgcolor="#FFFFFF"> although it's already predefined in Armed Assault®. The tag

is much more important, it defines a line-break. <hr> defines an horizon line which is
actually non visible in the briefing. Paragraphs have to be defined by using the <p> tag.
And last but not least the <a> tag, which is needed to define links inside an Html-
Document. He who wants to define one of those nice links in the briefing which make
the crosshair move to its predefined position can get an example below.

A short example:
If one has set a marker called Target on the map, so this one only needs to be linked in
the briefing. The sentense in the briefing is called: Hit and run the target. The word
Target has to be linked with its respective position on the map. The order in the Html-
Document looks like this

Hit and run the Target

The marker called target is defined in the command between <a> and . If the player
clicks on the word “Target” the cross hair would move to the position on the map, as
shown in the image below. Commands which are defined with a backslash will end each
command.

62

Chapter 3
– Weapons – Vehicles – Units – Objects –

Now that you have become more familiar with the user interface and the file-types
covered in the first two chapters, we now will go to the more specific sections. Also, you
should know how to place units on the map and connect them to each other with
waypoints. You will now learn all about weapons, vehicles, units and objects in this
chapter.

3.1 The hand weapons and static weapons 64
3.2 The weapon classes 68
3.3 Arm and equip units 70
3.4 The weapon and ammo crates 71
3.5 Load and unload vehicles 71
3.6 Weapon selection In the briefing 72
3.7 The vehicle classes 73
3.8 The vehicle weapon classes 76
3.9 The unit classes 77
3.10 The shell classes 80
3.11 The object and building classes 81
3.12 The plant classes 88
3.13 The rock classes 90
3.14 The sign classes 91
3.15 Getting weapon and magazine types displayed 92
3.16 Getting fired type 92
3.17 Does a unit have a weapon? 92
3.18 Primary or secondary weapon of a unit 93
3.19 Does unit have ammunition? 93
3.20 Creating mines 93
3.21 Creating weapons and magazines 94
3.22 Getting weapon view direction displayed 95

Note!
Because of a mistake I have added class names of Low Fly´s 1.02 Editor Upgrade, which gives you the
possibility to add objects like signs, rocks and plants, here in this chapter. You will need it generally
when you want to use the createvehicle command to create a sign for example. I don´t wanted to
remove the lists and therefore please download it from one of the community websites. Thanks!

63

C
h

ap
ter

3

Here you have a well defined overview of the hand and static weapons, each with a
description of the weapon, its magazine, and additional information.

WEST / RESISTANCE – Light Hand Guns

Weapon: M16A2 M16A2GL M4GL - M4A1GL
Magazine: 20Rnd_556x45_Stanag 20Rnd_556x45_Stanag 20Rnd_556x45_Stanag

30Rnd_556x45_Stanag 30Rnd_556x45_Stanag 30Rnd_556x45_Stanag
Grenade: 1Rnd_HE_M203 1Rnd_HE_M203
Flares: FlareWhite_M203 FlareWhite_M203

FlareGreen_M203 FlareGreen_M203
FlareRed_M203 FlareRed_M203
FlareYellow_M203 FlareYellow_M203

Weapon: M4 M4A1SD M4AIM
Magazine: 20Rnd_556x45_Stanag 20Rnd_556x45_Stanag 20Rnd_556x45_Stanag

30Rnd_556x45_Stanag 30Rnd_556x45_Stanag 30Rnd_556x45_Stanag
30Rnd_556x45_StanagSD 30Rnd_556x45_StanagSD 30Rnd_556x45_StanagSD

Weapon: M16A4 - M4A1 M16A4_GL M16A4_ACG_GL
Magazine: 20Rnd_556x45_Stanag 20Rnd_556x45_Stanag 20Rnd_556x45_Stanag

30Rnd_556x45_Stanag 30Rnd_556x45_Stanag 30Rnd_556x45_Stanag
Grenade: 1Rnd_HE_M203 1Rnd_HE_M203
Flares: FlareWhite_M203 FlareWhite_M203

FlareGreen_M203 FlareGreen_M203
FlareRed_M203 FlareRed_M203
FlareYellow_M203 FlareYellow_M203

Weapon: M16A4_ACG MP5A5 MP5SD
Magazine: 20Rnd_556x45_Stanag 30Rnd_9x19_MP5 30Rnd_9x19_MP5

30Rnd_556x45_Stanag 30Rnd_9x19_MP5SD 30Rnd_9x19_MP5SD

64

3.1 - The hand weapons and static weapons

Weapon: M4SPR M249 M240
Magazine: 20Rnd_556x45_Stanag 20Rnd_556x45_Stanag 100Rnd_762x51_M240

30Rnd_556x45_Stanag 30Rnd_556x45_Stanag
30Rnd_556x45_StanagSD 30Rnd_556x45_StanagSD

200Rnd_556x45_M249

Weapon: G36a G36C G36K
Magazine: 30Rnd_556x45_ G36 30Rnd_556x45_G36 30Rnd_556x45_ G36

Weapon: M24 M107
Magazine: 5Rnd_762x51_M24 10Rnd_127x99_M107

Weapon: M9 M9SD
Magazine: 15Rnd_9x19_M9 15Rnd_9x19_M9

15Rnd_9x19_M9SD 15Rnd_9x19_M9SD

WEST / RESISTANCE – Heavy Hand Guns

Weapon: Stinger M136 Javelin
Magazine: Stinger M136 Javelin

WEST / RESISTANCE – Static Guns

Weapon: M119 M2StaticMG SearchLight
M2HD_mini_TriPod

Magazine: 30Rnd_105mmHE_M119 100Rnd_127x99_M2

65

C
h

ap
ter

3

Weapon: MK19_TriPod TOW_TriPod Stinger_Pod
Magazine: 48Rnd_40mm_MK19 6Rnd_TOW_Tripod 2Rnd_Stinger

EAST – Light Guns

Weapon: AK74 AK74GL AKS74U
Magazine: 30Rnd_545x39_AK 30Rnd_545x39_AK 30Rnd_545x39_AK
Grenade: 1Rnd_HE_GP25
Flares: FlareWhite_GP25

FlareGreen_GP25
FlareRed_GP25
FlareYellow_GP25

Weapon: AKS74UN PK SVD
Magazine: 30Rnd_545x39_AK 100Rnd_762x54_PK 10Rnd_762x54_SVD

30Rnd_545x39_AKSD

Weapon: AKS74PSO KSVK
Magazine: 30Rnd_545x39_AK 5Rnd_127x108_KSVK

Weapon: Makarov MakarovSD
Magazine: 8Rnd_9x18_Makarov 8Rnd_9x18_Makarov

8Rnd_9x18_MakarovSD 8Rnd_9x18_MakarovSD

66

EAST – Heavy Guns

Weapon: 6G30 RPG7V Strela
Magazine: 6Rnd_HE_6G30 PG7V Strela

EAST – Static Guns

Weapon: D30 DSHKM DSHkM_Mini_TriPod
Magazine: 30Rnd_122mmHE_D30 50Rnd_127x107_DSHKM 50Rnd_127x107_DSHKM

Weapon: TOW_TriPod_East Stinger_Pod_East AGS
Magazine: 6Rnd_TOW_Tripod 2Rnd_Stinger 29Rnd_30mm_AGS30

Equipment (general)

Weapon: LaserDesignator NVGoggles Binocular
Magazine: LaserBatteries

Weapon: Handgrenade HandGrenadeTimed Pipebomb
Magazine: Handgrenade HandGrenadeTimed Pipebomb

Weapon: Mine MineE SmokeShell
Magazine: Mine MineE SmokeShell

SmokeShellRed
SmokeShellGreen

67

C
h

ap
ter

3

One can take a look at all used weapons and their magazines on the list below. A small
description was added to every entry as well. Of course it makes no sense to give out
magazines defined with an“SD”for suppressed weapons to a weapon without a suppressor.

West / Resistance

68

Weapon Class Description Ammunition
M16A2

M16A4

M16A4_ACG

M4

M4A1

M4A1SD

M4AIM

M4SPR

M16A2

M16A4

M16A4 - Scope

M 4 - Standard

M 4 A1 - Standard

M 4 - Silencer

M4 - Aimpoint

M 4 - Scope

Magazine: 20Rnd_556x45_Stanag
30Rnd_556x45_Stanag
30Rnd_556x45_StanagSD

M16A2GL

M16A4_GL

M16A4_ACG_GL

M4GL

M4A1GL

Guns with
Grenade Launcher

Magazine: 20Rnd_556x45_Stanag
30Rnd_556x45_Stanag
30Rnd_556x45_StanagSD

Grenade: 1Rnd_HE_M203

Flares: FlareWhite_M203
FlareGreen_M203
FlareRed_M203
FlareYellow_M203

M249 M249 SAW Magazine: 20Rnd_556x45_Stanag
30Rnd_556x45_Stanag
200Rnd_556x45_M249
30Rnd_556x45_StanagSD

M240 M240 Magazine: 100Rnd_762x51_M240
G36a

G36C

G36K

G 36 – Standard

G 36 - Commando

G 36 – Commando II

Magazine: 30Rnd_556x45_G36

M24 Sniper Rifle Magazine: 5Rnd_762x51_M24
M107 Heavy Sniper Rifle Magazine: 10Rnd_127x99_M107
MP5A5

MP5SD

MP5 - StandardMP5 -

Silencer

Magazine: 30Rnd_9x19_MP5
30Rnd_9x19_MP5SD

M9
M9SD

Pistol
Pistol - Silencer

Magazine: 15Rnd_9x19_M9
15Rnd_9x19_M9SD

M136 AT Rocket Launcher Magazine: M136

Javelin AT Rocket Launcher Magazine: Javelin
Stinger AA Rocket Launcher Magazine: Stinger

3.2 -The weapons class name list

East

Equipment

69

C
h

ap
ter

3

Weapon Class Description Ammunition
AK74 AK 74 Magazine: 30Rnd_545x39_AK
AK74GL AK 74

with Grenade Launcher
Magazine: 30Rnd_545x39_AK

Grenade: 1Rnd_HE_GP25

Flares: FlareWhite_GP25
FlareGreen_GP25
FlareRed_GP25
FlareYellow_GP25

AKS74U
AKS74UN

AKS 74 U - Standard
AKS74UN - Silencer

Magazine 30Rnd_545x39_AK
30Rnd_545x39_AKSD

AKS74PSO AKS74 - Scope Magazine: 30Rnd_545x39_AK AK74PSO
PK MG Magazine: 100Rnd_762x54_PK
KSVK Heavy Sniper Rifle Magazine: 5Rnd_127x108_KSVK

SVD Sniper Rifle Magazine: 10Rnd_762x54_SVD

Makarov
MakarovSD

Pistol
Pistol - Silencer

Magazine: 8Rnd_9x18_Makarov
8Rnd _9x18_MakarovSD

6G30 Grenade Launcher Magazine: 6Rnd_HE_6G30
RPG7V AT Rocket Launcher Magazine: RPG7V

Strela AA Rocket Launcher Magazine: Strela

Weapon Class Description Ammunition
Handgrenade Handgrenade Handgrenade
HandGrenadeTimed Handgrenade (time delay) HandGrenadeTimed
Grenade Grenade Grenade
TimeBomb Time Bomb TimeBomb
PipeBomb Explosive Charge PipeBomb
SmokeShell White Smokeshell SmokeShell
SmokeShellRed Red Smokeshell SmokeShellRed
SmokeShellGreen Green Smokeshell SmokeShellGreen
Mine Tank Mine Mine
MineE AP Mine MineE
Binocular Binoculars Binocular
NVgoggles Night Vision Device NVgoggles
LaserDesignator Laser Designator LaserBatteries
CarHorn Car Horn CarHorn
SportCarHorn Sport Car Horn SportCarHorn
TruckHorn Truck Horn TruckHorn
BikeHorn Bicycle Bell BikeHorn

All units which are placeable in Armed Assault® can be armed or unarmed. Its quite well
to know that every single unit can carry only one gun (such as a rifle) and only one heavy
weapon (such as a LAW or an anti-aircraft weapon). It is possible to add a weapon after
the default weapon has been removed first. All weapons can be removed individually
and/or completely. A single weapon can be removed by using following syntax:

this removeWeapon "M4" or Name removeWeapon "M4"

The magazines and hand grenades and so on are still in use by the character. If the user
adds a weapon to the character which needs the same magazine type, this weapon would
be loaded at the beginning. But in the following case it will not appear if the user is using
the following syntax:

removeAllWeapons Name

All weapons and all magazines will be removed from the character by using this syntax.
If the user wants to rearm that character completely, he has to do it in a special way,
because the weapon wouldn't be loaded at the beginning of the mission. The magazines
have to be defined first and the weapons have to be defined last to make sure that the
weapon will be loaded at the beginning of the mission.

After the weapon (for example the M4) has been removed while using the syntax above,
the user can add a new one by using the following syntax:

this addWeapon "M4A1SD" or Name addWeapon "M4A1SD";

That entry can be done in the init. line of the unit or in other places like scripts, triggers
or waypoints. If the user wants to remove a magazine only, he only has to use this syntax:

this removeMagazine "30Rnd_556x45_Stanag"

and to rearm with a new magazine just use this syntax:

this addMagazine "30Rnd_556x45_StanagSD"

If all or only some magazines have to be removed, the following syntax can be used as
well. All values between 0 and 1 are valid.

Name setVehicleAmmo 0.5

These orders are not meant for the weapons only, they can be used for additional
equipment as well. The default unit is not equipped with binoculars or night vision
goggles, but those two things are quite useful while traversing the huge landscapes of
Sahrani, or at night. To add these weapons to the character the user has to enter following
syntax in the init. line of the recipient unit:

To add the binoculars: this addWeapon "Binocular";

And for the night vision goggles: this addWeapon "NVGoggles";
70

3.3 - Arm and equip units

All weapons and ammo crates let soldiers equip themselves individually. It makes no
difference as to whether one adds weapons and magazines in different ammo crates or
only in a single one. To define items for a ammo boxes it's necessary to clear it first. To do
this use following syntax:

clearWeaponCargo this or clearWeaponCargo Name
clearMagazineCargo this or clearMagazineCargo Name

Those entries have to be made in the initialization line of the respective ammo boxes. Its
also possible to define them in external areas like scripts and triggers a.s.o. After the
ammo box has been cleared, the user can add the weapons and magazines as he’d like to
use in the mission. You can rename the ammo box or just use the syntax "this".

An ammo box will be equipped with 2 suppressed M4A1's, 10 compatible magazines and
6 hand grenades:

this addWeaponCargo ["M4A1SD",2];
this addMagazineCargo ["30Rnd_556x45_StanagSD",10];
this addMagazineCargo ["Handgrenade",6];

Note! Even barrels can be equipped with weapons and ammunition. It’s exactly the same
way as equipping ammo boxes, the only difference is that the barrels don’t have to be
cleared beforehand.

Many vehicles in ArmA© are already equipped with weapons, ammunition and similar
things. One always has the possibility to rearm himself there. It’s also possible to equip
vehicles with weapons and ammunition. The same procedure which is done while
equipping ammo boxes is done here. To unload vehicles use this syntax:

clearWeaponCargo this
clearMagazineCargo this

To load a vehicle again use this one:

this addWeaponCargo ["M4A1SD",2];
this addMagazineCargo ["30Rnd_556x45_StanagSD",10];

In that example, 2 suppressed M4A1's and 10 compatible magazines were loaded into the
vehicle.

71

C
h

ap
ter

3

3.4 - The weapons and ammo crates

3.5 - Load and unload vehicles

If the player is joining the game as group leader, he has the possibility to edit the weapons
and equipment of himself and/or his group members. The only prerequisite is that these
features are defined in the description first. Just refer to Chapter 2.3 -The Description.ext.

To make sure that it works, the user needs to define the weapon with their similar
magazines. One can find 6 suppressed M4A1's with their additional magazines, 2 M136
Rocket launcher's with 6 rockets and 20 hand grenades, in the following example:

The kind of weapons

The number of weapons

The kind of weapons

The number of weapons

The kind of magazines

The number of magazines

The kind of magazines

The number of magazines

The kind of magazines

The number of magazines

If one wants to add additional weapons he only has to add each class of the weapon and
the related magazine to the similar section in the Description.ext.

72

// Here starts the part of Class Weapons
class Weapons
{

class M4A1SD
{
count = 6;
};
class M136
{
count = 2;
};

};
// Here ends the part of Class Weapons

// Here starts the part of Class Magazines
class Magazines
{

class 30Rnd_556x45_StanagSD
{
count = 20;
};
class M136
{
count = 6;
};
class HandGrenade
{
count = 20;
};

};
// Here ends the part of Class Magazines

3.6 - Weapon selection in the briefing

WEST

73

Vehicle Description Class Name
Land

M1Abrams Tank M1Abrams
M113 Armored Personnel Tank M113
M113Ambul Ambulance Tank M113Ambul
M113 Mobile HQ Mobile Headquarter Tank M113_MHQ
Vulcan Anti Aircraft Tank Vulcan
Stryker ICV M2 Light Tank with M2-Machine Gun Stryker_ICV_M2
Stryker ICV MK19 Light Tank with Grenade Launcher Stryker_ICV_MK19
Stryker TOW Light Tank with AT-Launcher Stryker_TOW
HMMWV HMMWV HMMWV
HMMWV M2 HMMWV with M2-Machine Gun HMMWV50
HMMWV TOW HMMWV with AT-Launcher HMMWVTOW
HMMWV MK 19 HMMWV with Grenade Launcher HMMWVMK
Truck 5 t Truck 5 Tons Truck5t
Truck 5 t Open Truck 5 Tons - open Truck5tOpen
Truck 5 t MG Truck 5 Tons with M2-Machine Gun Truck5tMG
Truck 5 t Repair Truck 5 Tons - Repair Truck Truck5tRepair
Truck 5 t Reammo Truck 5 Tons - Reammo Truck Truck5tReammo
Truck 5 t Refuel Truck 5 Tons - Refuel Truck Truck5tRefuel

Truck 5 t Ammo Truck Truck 5 Tons - Reammo Truck (Warfare) WarfareTruck5tReammo

Truck 5 t Supply Truck 5 Tons - Supply (Warfare) WarfareWestSupplyTruck

Truck 5 t Salvage Truck 5 Tons - Salvage (Warfare) WarfareWestSalvageTruck

Motorcycle Motorcycle M1030

Air
AH 1 Z Cobra - Helicopter Gunship AH1W
AH 6 Little Bird Helicopter armed AH6
AV 8 B Harrier with Rockets AV8B2
AV 8 B (GBU) Harrier with Bombs AV8B
A10 A10 with Rockets and GAU12-Cannon A10
MH 6 Little Bird - Helicopter unarmed MH6
UH 60 Blackhawk - Helicopter with MG UH60MG
UH 60 (FFAR) Blackhawk - Helicopter with Rocket Launcher UH60
Camel Biplane Camel
Parachute Parachute ParachuteWest

Water
CRRC Inflatable Dinghy Zodiac
RHIB Patrol Boat with Machine Gun RHIB
RHIB 2 Turret PatrolBoatwithMachineGun,GrenadeLauncher RHIB2Turret

3.7 - The vehicle classes

C
h

ap
ter

3

EAST

74

Vehicle Description Class Name
Land

T72 Tank T72
BMP2 Armoured Personnel Tank BMP2
BMP2Ambulance Ambulance Tank BMP2Ambul
BMP2 Mobile HQ Mobile Headquarter Tank BMP2_MHQ
ZSU Anti Aircraft Tank ZSU
BRDM2 Light Tank BRDM2
BRDM2_ATGM Light Tank with AT-Launcher BRDM2_ATGM
UAZ Jeep UAZ
UAZMG Jeep with Machine Gun UAZMG
Ural Truck Ural
Ural Open Truck – open UralOpen
Ural Repair Truck – Repair Truck UralRepair
Ural Reammo Truck – Reammo Truck UralReammo
Ural Refuel Truck – ReFuel Truck UralRefuel
Ural Ammo Reammo Truck (Warfare) WarfareUralReammo
Ural Supply Lkw - Supply (Warfare) WarfareEastSupplyTruck
Ural Salvage Lkw - Salvage (Warfare) WarfareEastSalvageTruck
Motorcycle Motorcycle TT650G
Datsun DshKm - 1 Pick-up with heavy MG DATSUN_DSHKM1

Datsun DshKm - 2 Pick-up with heavy MG DATSUN_DSHKM2

Datsun Pk -1 Pick-up with MG DATSUN_PK1

Datsun Pk -2 Pick-up with MG DATSUN_PK2

Hilux DshKm - 1 Pick-up with heavy MG HILUX_DSHKM1

Hilux DshKm - 2 Pick-up with heavy MG HILUX_DSHKM2

Hilux Pk -1 Pick-up with MG HILUX_PK1

Hilux Pk -2 Pick-up with MG HILUX_PK2

Air
SU 34 SU 34 with Rockets, FFAR, Heavy Cannon SU34
SU 34B SU 34 with Rockets and Heavy Cannon SU34B
Mi 17 Helicopter with Machine Gun Mi17_MG
Mi 17 Helicopter with Rocket Launcher Mi17
KA-50 Helicopter Gunship KA50
Camel E Biplane Camel2
Parachute Parachute ParachuteEast

Water
PBX Boat Inflatable Dinghy PBX

RESISTANCE

CIVILIAN

75

Vehicle Description Class Name
Land

Pick-Up Pick-Up blue Datsun1_civil_1_open
Pick-Up 2 Pick-Up rot (closed) Datsun1_civil_2_covered
Pick-Up 3 Pick-Up green Datsun1_civil_3_open
Offroad Off-Road Vehicle grey (open) Hilux1_civil_1_open
Offroad2 Off-Road Vehicle red top Hilux1_civil_3_open
Offroad3 Off-Road Vehicle white (open) Hilux1_civil_2_covered
Sedan Car white Car_sedan
Hatchback Car red Car_hatchback
Skoda Skoda white Skoda
Skoda (Blue) Skoda blue SkodaBlue
Skoda (Red) Skoda red SkodaRed
Skoda (Green) Skoda green SkodaGreen
Policecar Police Jeep Landrover_Police
HMMWV (Civil) HMMWV (Civil) HMMWV_civil
Bus City Bus Bus_city
UralCivil Truck yellow (closed) UralCivil
UralCivil 2 Truck blue (open) UralCivil2
Traktor Tractor Tractor
Motorcycle Motorcycle TT650C

Air
Parachute Parachute ParachuteC
Parachute Empty Parachute Parachute
DC3 DC3 Civil Plane DC3

C
h

ap
ter

3

Vehicle Description Class Name
Land

T72 RACS Tank T72_RACS
M113 RACS Armoured Personnel Tank M113_RACS
Vulkan RACS Anti Aircraft Tank Vulcan_RACS
4x4 Jeep (closed) Landrover
4x4 MG Jeep with Machine Gun M2 LandroverMG
4x4 Open Jeep open Landrover_Closed

Air
AH6 RACS Little Bird Helicopter armed AH6_RACS
MH6 RACS Little Bird MH6_RACS
UH60 (FFAR) RACS UH-60 (FFAR) RACS UH60RACS
UH-60 RACS UH-60 RACS UH60MGRACS
Parachute Parachute ParachuteG

Water
CRRC Inflatable Dinghy Zodiac2

76

Air
Vehicle Weapon Magazine
UH60 Black Hawk MG M134 200Rnd_762x51_134
UH60 Black Hawk FFAR FFARLauncher 38Rnd_FFAR
AH 1 Supercobra HellfireLauncher

FFARLauncher
8Rnd_Hellfire
38Rnd_FFAR

AH6 Littlebird FFAR, MG M197
TwinM134
FFARLauncher

750Rnd_M197_AH1
4000Rnd_762x51_M134
14Rnd_FFAR

AV-8B Harrier GAU12
SidewinderLauncher

300Rnd_25mm_Gau12
4Rnd_Sidewinder_AV8B

AV-8B Harrier GBU BombLauncher
GAU12

5Rnd_GBU12_AV8B
300Rnd_25mm_Gau12

A10 MaverickLauncher
GAU8

5Rnd_Maverick_A10
1350Rnd_30mmAP_A10

Camel TwinVickers
CamelGrenades

500Rnd_TwinVickers
6Rnd_Grenade_Camel

KA-50 2A42

80mmLauncher
VikhrLauncher

230Rnd_30mmHE_2A42
230Rnd_30mmAP_2A42
40Rnd_80mm
12Rnd_Vikhr_KA50

MI-17 MG PKT 2000Rnd_762x54_PKT
MI-17 FFAR 57mmLauncher 96Rnd_57mm
SU 34 R73Launcher

S8Launcher
GSh301

4Rnd_R73
42Rnd_S8T
180Rnd_30mm_GSh301

SU 34 B Ch29Launcher
GSh301

6Rnd_Ch29
180Rnd_30mm_GSh301

Land/Water
BMP 2 2A42

PKT
AT5Launcher

250Rnd_30mmHE_2A42
250Rnd_30mmAP_2A42
2000Rnd_762x54_PKT
8Rnd_AT5_BMP2

BRDM 2 KPVT
PKT

500Rnd_145x115_KPVT
150Rnd_762x54_PKT

BRDM 2 ATGM AT5Launcher 5Rnd_AT5_BRDM2
M113 MTW M2 100Rnd_127x99_M2
M113 Vulcan M168 2100Rnd_20mm_M168
M1A2 Abrahams M256

M240_Veh

20Rnd_120mmSABOT_M1A2
20Rnd_120mmHE_M1A2
1200Rnd_762x51_M240

T72, T72Racs D81 23Rnd_125mmSABOT_T72
23Rnd_125mmHE_T72

Shilka AZP85 2000Rnd_23mm_AZP85
Stryker ATGM TOWLauncher 2Rnd_TOW
Stryker ICV MG M2 100Rnd_127x99_M2
Stryker MK19 MK19 48Rnd_40mm_MK19
HMMWV TOW TOWLauncherSingle 6Rnd_TOW_HMMWV
HMMWV MK19 MK19 48Rnd_40mm_MK19
5to LKW MG M2 100Rnd_127x99_M2
UAZ AGS 30 AGS30 29Rnd_30mm_AGS30
UAZ MG DSHKM 50Rnd_127x107_DSHKM
Army 4x4 M2 M2 100Rnd_127x99_M2
RHIB M2 100Rnd_127x99_M2

3.8 - The vehicle weapons

WEST

77

3.9 - The unit classes

C
h

ap
ter

3

Unit Description Class Name
AA Specialist Anti Aircraft Soldier with Stinger SoldierWAA
AT Specialist Anti Tank Soldier with M 136 SoldierWAT
Automatic Rifleman Soldier with Machine Gun M249 SoldierWAR
Camel Pilot Biplane Pilot with M9 Pistol BISCamelPilot
Crewman Vehicle Crew M4A1 SoldierWCrew
Engineer Engineer with M4 AIM SoldierWMiner
Grenadier Grenadier with M4 203 SoldierWG
Machinegunner Soldier with Machine Gun M240 SoldierWMG
Medic Corpsman with M4 AIM SoldierWMedic
Officer Offizier with M9 Pistol OfficerW
Pilot Pilot with M4A1 SoldierWPilot
Rifleman Soldier with M4AIM SoldierWB
Rifleman Soldier with M4AIM SoldierWNOG
SF Assault Special Forces with M4A1GL SoldierWSaboteurAssault
SF Marksman Special Forces with M4 SPR SoldierWSaboteurMarksman
SF Recon Special Forces with M4 A1 SD SoldierWSaboteurRecon
SF Saboteur Special Forces with M4 A1 SD SoldierWSaboteurPipe
SF Saboteur 2 Special Forces with MP 5 SD SoldierWSaboteurPipe2
Sniper Sniper with M24 Sniper Rifle SoldierWSniper
Squad Leader Squad Leader with M4 AIM SquadLeaderW
Team Leader Team Leader with M4 AIM TeamLeaderW
Prisoner Prisoner without Weapon SoldierWCaptive
USMC Fire Team Leader Team Leader M16A4 ACOG GL USMCD_Soldier_TL
USMC Machinegunner Soldier with Machine Gun M240 USMCD_Soldier_MG
USMC AASpecialist Anti Aircraft Soldier with Stinger USMCD_Soldier_AA
USMC Rifleman Soldier with M16A4 USMCD_Soldier_R
USMC Rifleman (GL) Soldier with M16A4 ACOG GL USMCD_Soldier_GL
USMC Rifleman (Mines) Soldier with M16A4 und Minen USMCD_Soldier_Engineer
USMC Rifleman (M136) Anti Tank Soldier with M 136 USMCD_Soldier_AT
USMC Corpsman Corpsman with M4 AIM USMCD_Soldier_Med
USMC Squad Leader Squad Leader with M16A4 ACOG USMCD_Soldier_SL
USMC Automatic Rifleman Soldier with Machine Gun M249 USMCD_Soldier_AR
USMC AT Specialist (Javelin) Anti Tank Soldier with Javeline USMCD_Soldier_HAT
USMC Sniper Sniper with M24 Sniper Rifle USMCD_Soldier_Sniper
USMC Spotter Soldier with M16A4 ACOG USMCD_Soldier_Spotter
(WDL) Rifleman Soldier with M16A4 (WDL) US_Soldier_WDL
(WDL) Medic Soldier with M16A4 (WDL) US_Soldier_WDL_Med
(WDL) Grenadier Soldier with M16A4 RCO GL (WDL) US_Soldier_WDL_GL
(WDL) AT Specialist Anti Tank Soldier with M 136 (WDL) US_Soldier_WDL_AT
(WDL) AA Specialist Anti Aircraft Soldier with Stinger (WDL) US_Soldier_WDL_AA
(WDL) Machinegunner Soldier with Machine Gun M240 (WDL) US_Soldier_WDL_MG
(WDL) Engineer Soldier with M16A4 and Mines (WDL) US_Soldier_WDL_Engineer
(WDL) Designated Marksman Sniper with M24 Sniper Rifle (WDL) US_Soldier_WDL_Sniper
(WDL) Automatic Rifleman Soldier with Machine Gun M249 (WDL) US_Soldier_WDL_AR
(WDL) Team Leader Team Leader with M4 AIM US_Soldier_WDL_TL
(WDL) Squad Leader Squad Leader with M16A4 ACOG (WDL) US_Soldier_WDL_SL
Mercenary Team Leader Mercenary Team Leader SoldierMTeamLeader
Mercenary Grenadier Mercenary Grenadier SoldierMG
Mercenary Machinegunner Mercenary Machinegunner SoldierMMG
Mercenary Engineer Mercenary Engineer SoldierMR
Mercenary Sniper Mercenary Sniper SoldierMS
Mercenary Saboteur Mercenary Saboteur SoldierMD

EAST

RESISTANCE

78

Unit Description Class Name
AA Specialist Anti Aircraft Soldier with Stinger SoldierGAA
AT Specialist Anti Tank Soldier with M136 SoldierGAT
Crewman Vehicle Crew SoldierGCrew
Engineer Engineer SoldierGMiner
Grenadier Grenadier SoldierGG
Machinegunner Soldier with Machine Gun M240 SoldierGMG
Medic Corpsman SoldierGMedic
Officer Offizier OfficerG
Pilot Pilot SoldierGPilot
Rifleman Soldier with M16 A2 SoldierGB
Rifleman Soldier with M16 A2 SoldierGNOG
Royal Commando Royal Commando with MP 5 SD SoldierGCommando
Royal Guard Royal Guard with G36c SoldierGGuard
Royal Marksman Royal Sniper with G36a SoldierGMarksman
Sniper Sniper with Sniper Rifle M24 SoldierGSniper
Squad Leader Squad Leader SquadLeader
Team Leader Team Leader TeamLeader
Prisoner Prisoner SoldierGCaptive
Spy Spy SoldierSpy

Unit Description Class Name
AA Specialist Anti Aircraft Soldier with Strela SoldierEAA
AT Specialist Anti Tank Soldier with RPG 7 V SoldierEAT
Camel Pilot Biplane Pilot BISCamelPilot2
Crewman Vehicle Crew SoldierECrew
Engineer Engineer SoldierEMiner
Especas Speznaz with AKS 74 U SoldierESaboteurPipe
Especas Marksman Speznaz with AKS74PSO SoldierESaboteurMarksman
Especas Saboteur Speznaz with AKS 74 UN SoldierESaboteurBizon
Grenadier Grenadier SoldierEG
Machinegunner Soldier with Machine Gun PK SoldierEMG
Medic Corpsman SoldierEMedic
Rifleman Soldier with AK-74 SoldierEB
Rifleman Soldier with AK-74 SoldierENOG
Officer Officer OfficerE
Pilot Pilot SoldierEPilot
Sniper Sniper with Dragunov (SVD) SoldierESniper
Squad Leader Squad Leader SquadLeaderE
Team Leader Team Leader TeamLeaderE
Prisoner Prisoner SoldierECaptive
Partisan Team Leader Partisan Team Leader SoldierPTeamLeader
Partisan AT Specialist Partisan AT Specialist SoldierPAT
Partisan Saboteur Partisan Saboteur SoldierPSaboteur
Partisan Machinegunner Partisan Machinegunner SoldierPMG
Partisan Medic Partisan Medic SoldierPMedic
Partisan Rifleman Partisan Rifleman SoldierPB

CIVILIAN

INSECTS
Typeswhich are defined with N/A are not available in the Editor. These units can be
generated by using the CreateVehicle command as explained in Chapter 5.45.

79

Type Description Class Name
N/A Seagull Seagull
N/A Dragonfly Dragonfly
N/A HouseFly HouseFly
N/A Honeybee Honeybee
N/A Mosquito Mosquito
N/A Butterfly Butterfly

C
h

ap
ter

3

Unit Description Class Name
Civilian to Civilian21 Nearer description is not necessary.

Numbered from Civilian to Civilian21.
Civilian

Civilian Man Civilian Man D2_RCM03_Civilian1
Civilian Man Civilian Man D2_RCM03_Civilian2
King King King
War Correspondent War Correspondent FieldReporter
Bodyguard Bodyguard Anchorman
Prime Minister Prime Minister NorthPrimeMinister
Reporter (Female) Reporter (Female) MarianQuandt
Reporter (Female) Reporter (Female) MarianQuandt02
Reporter (Female) Reporter (Female) MarianQuandt03
Reporter (Female) Reporter (Female) MarianQuandt04
Zombie Zombie Civil_Undead_1
Zombie Zombie Civil_Undead_2
Zombie Zombie Civil_Undead_3
Zombie Zombie Civil_Undead_4
Prisoner 1 Prisoner 1 Prisoner01
Prisoner 2 Prisoner 2 Prisoner02
Prisoner 3 Prisoner 3 Prisoner03
Prisoner 4 Prisoner 4 Prisoner04
Prisoner 5 Prisoner 5 Prisoner05
Prince (civil) Prince (civil) Prince_civil
Prince (Army) Prince (Army) Prince_army
Prince (Partisan) Prince (Partisan) Prince_resistance
Chancellor Chancellor Chancellor
Adjutant (Uniform) Adjutant (Uniform) AdjutantUniform
Adjutant (Prisoner) Adjutant (Prisoner) AdjutantPrisoner
Arms trader Arms trader ArmsTrader
SLA President SLA President civil_nprem2
SLA President SLA President civil_nprem2_NoGeom

One can find a selection of the Shell Classes. Shells are the bullets of each single Weapon.
It’s possible to do everything by using this command, i.e. an explosion or get other fired
attack simulated. Those Shells can be created by using the create vehicle command as
explained in Chapter 5.45/5.46. An example of such a command can be seen below:

Bomb="SH_125_HE" createVehicle [x,y,z]
Bomb="SH_125_HE" createVehicle position Player

80

Shell Types
B_9x18_Ball
B_9x18_SD
B_9x19_Ball
B_9x19_SD
B_127x108_Ball
B_127x99_Ball_noTracer
B_545x39_Ball
B_545x39_SD
B_556x45_Ball
B_556x45_SD
B_762x51_Ball
B_762x54_Ball

B_762x54_noTracer
B_77x56_Ball
B_127x99_Ball
B_127x107_Ball
B_145x115_AP
B_20mm_AP
B_20mm_AA
B_23mm_AA
B_25mm_HE
B_30mm_AP
B_30mm_HE
B_30mmA10_AP

Rocket and Grenade Types
R_Hydra_HE
R_57mm_HE
R_80mm_HE
R_M136_AT
R_PG7V_AT
R_KSVK
R_PG7VR_AT
M_Javelin_AT
M_Stinger_AA
M_Strela_AA
M_AT5_AT´

M_Sidewinder_AA
M_TOW_AT
M_Hellfire_AT
M_Maverick_AT
M_Vikhr_AT
BO_GBU12_LGB
SH_125_HE
SH_120_HE
SH_122_HE
SH_105_HE
G_40mm_HE_6G30

3.10 - The shell classes

Others
Class Name Description
FxExploGround1
FxExploGround2
FxExploArmor1
FxExploArmor2
FxExploArmor3
FxExploArmor4
FxCartridge
Bomb
LaserTargetW
LaserTargetE
LaserTargetC

Rock Fragment
Rock Fragment
Shell Splinter
Shell Splinter
Shell Splinter
Shell Splinter
Cartridge Case
Grenade (requires setDamage)
Laser Target West
Laser Target East
Laser Target Civilian

81

C
h

ap
ter

3

The following list contains a selection of objects which can be placed directly or indirectly
somewhere on the map. To place the objects the create-vehicle command is needed
again as explained in Chapter 5.45.

3.11 - The object and building classes

Type Description Class Name
A Camp
Bmp2 Wreck
Barrels
Barrel (red)
Barrel (brown)
Barrel (yellow)
Barrel (green rosty)
Barrel (green rosty)
Barrel (white purple)
Body
Blackhawk Wreck
Camera
Camp
Camp Empty
Camp East
Camp East C
Computer
Danger
DangerWest
DangerGUE
DangerEAST
Datsun Wreck 1
Datsun Wreck 2
Fence
Fire
FireLit
FlagCarrierWest
FlagCarrierNorth
FlagCarrierSouth
Fortress1
Fortress2
FenceWood
FenceWoodPalet
JeepWreck1
JeepWreck2
JeepWreck3
Grave
GraveCross1
GraveCross2 Grave
CrossHelmet
Heli
Heli-H Empty
Heli-H Civil
Heli-H Rescue
Hilux Wreck
Land_ladder
Land Radar
Obstacle
Training
Training 2
Training 3
Carousel

A Camp
Bmp2 Wreck
Barrels
Barrel (red)
Barrel (brown)
Barrel (yellow)
Barrel (green rosty)
Barrel (green rosty)
Barrel (white purple)
Body
Blackhawk Wreck
Camera
Camp
Camp Empty
Camp East
Camp East C
Computer
Danger
DangerWest
DangerGUE
DangerEAST
Datsun Wreck 1
Datsun Wreck 2
Fence
Fire
FireLit
FlagCarrierWest
FlagCarrierNorth
FlagCarrierSouth
Fortress1
Fortress2
FenceWood
FenceWoodPalet
JeepWreck1
JeepWreck2
JeepWreck3
Grave
GraveCross1
GraveCross2 Grave
CrossHelmet
Heli
Heli-H Empty
Heli-H Civil
Heli-H Rescue
Hilux Wreck
Land_ladder
Land Radar
Obstacle
Training
Training 2
Training 3
Carousel

ACamp
Bmp2Wreck
Barrels
Barrel1
Barrel2
Barrel3
Barrel4
Barrel5
Barrel6
Body
BlackhawkWreck
Camera1
Camp
CampEmpty
CampEast
CampEastC
Computer
Danger
DangerWest
DangerGUE
DangerEAST
Datsun01Wreck
Datsun02Wreck
Fence
Fire
FireLit
FlagCarrierWest
FlagCarrierNorth
FlagCarrierSouth
Fortress1
Fortress2
FenceWood
FenceWoodPalet
JeepWreck1
JeepWreck2
JeepWreck3
Grave
GraveCross1
GraveCross2
GraveCrossHelmet
Heli
HeliHEmpty
Heli_H_Civil
Heli_H_Rescue
HiluxWreck
Land_Ladder
Land_Radar
Land_obihacka
Land_podlejzacka
Land_prolejzacka
Land_prebehlavka
Land_kolotoc

82

Type Description Class Name
Carousel small
Swing
Prolezacka
SandPit
Obstacle
Fuel Tank Small
Fuel Tank Big
Fuel Tank Letter
Land Water Tank
Land Water Tank
MASH
M113 Wreck
Paleta1
Paleta2
Radio
Shed
Shed Small
Shed Big
TargetE
TargetEpopup
Wood tank
TV Studio
TV Studio (Building)
TV Radio Tower
TV Radio Tower Gangway
Ural Wreck
Bale Of Straw
Closet
Vysilacka
Wall Map
RahmadiMap
Sleeping Bag
Wire
Wire Fence
Barrier
AmmoBoxWest
SpecialBoxWest
WeaponBoxWest
AmmoBoxEast
SpecialBoxEast
WeaponBoxEast
AmmoBoxGuer
SpecialBoxGuer
WeaponBoxGuer
Little Church
Big Church
Middle Church
Mexican Church
Church
House
House
House
House
House
House
House
House
House
House

Carousel small
Swing
Prolezacka
SandPit
Obstacle
Fuel Tank Small
Fuel Tank Big
Fuel Tank Letter
Land Water Tank
Land Water Tank
MASH
M113 Wreck
Paleta1
Paleta2
Radio
Shed
Shed Small
Shed Big
TargetE
TargetEpopup
Wood tank
TV Studio
TV Studio (Building)
TV Radio Tower
TV Radio Tower Gangway
Ural Wreck
Bale Of Straw
Closet
Vysilacka
Wall Map
RahmadiMap
Sleeping Bag
Wire
Wire Fence
Barrier
AmmoBoxWest
SpecialBoxWest
WeaponBoxWest
AmmoBoxEast
SpecialBoxEast
WeaponBoxEast
AmmoBoxGuer
SpecialBoxGuer
WeaponBoxGuer
Little Church
Big Church
Middle Church
Mexican Church
Church
House
House
House
House
House
House
House
House
House
House

Land_maly_kolotoc
Land_houpacka
Land_kulata_prolezacka
Land_Piskoviste
Land_jezekbeton
Land_fuel_tank_small
Land_fuel_tank_big
Land_fuel_tank_stairs
Land_water_tank
Land_water_tank2
MASH
M113Wreck
Paleta1
Paleta2
Radio
Shed
ShedSmall
ShedBig
TargetE
TargetEpopup
TargetGrenade
TVStudio
Land_Vysilac_budova
Land_Vysilac_vez
Land_Vysilac_chodba
UralWreck
Vec03
Land_Toilet
Vysilacka
WallMap
RahmadiMap
Land_SleepingBag
Wire
WireFence
ZavoraAnim
AmmoBoxWest
SpecialBoxWest
WeaponBoxWest
AmmoBoxEast
SpecialBoxEast
WeaponBoxEast
AmmoBoxGuer
SpecialBoxGuer
WeaponBoxGuer
Land_kostel
Land_kostel2
Land_kostel3
Land_kostel_mexico
Land_kostelik
Land_sara_domek01
Land_sara_domek02
Land_sara_domek05
Land_sara_zluty_statek_in
Land_sara_Domek_sedy
Land_dum_mesto2
Land_sara_domek_sedy_bez
Land_sara_domek_rosa
Land_sara_zluty_statek
Land_sara_domek_zluty

C
h

ap
ter

3

83

Type Description Class Name
House
House
Houseblock (small)
Houseblock (middle)
Houseblock (big)
Hotel
Hotelruin
Holiday-In
Holiday-In
Holiday-In-Ruin
Holiday-In-Ruin
Weekend Flat
House (Oriental)
House (Oriental)
House (Oriental)
House (Oriental)
House (Oriental/Open)
House (Oriental/Open)
House (Oriental)
House (Oriental)
House (Oriental)
House (Oriental)
House (Oriental)
House (Oriental/Open)
House (Oriental)
House (Oriental)
House (Oriental)
House (Oriental)
Tall House (Oriental)
Tall House (Oriental)
Tall House (Oriental)
Tall House (Oriental)
Tall House (Oriental)
House
House
House
House
House
House
House
House (Classic)
Little House
Old House
Red House
Red House
Red House
City House (yellow)
House
House
House
House
House
House
House
House
House
House
Houseblock (small)
Houseblock (middle)

House
House
Houseblock (small)
Houseblock (middle)
Houseblock (big)
Hotel
Hotelruin
Holiday-In
Holiday-In
Holiday-In-Ruin
Holiday-In-Ruin
Weekend Flat
House (Oriental)
House (Oriental)
House (Oriental)
House (Oriental)
House (Oriental/Open)
House (Oriental/Open)
House (Oriental)
House (Oriental)
House (Oriental)
House (Oriental)
House (Oriental)
House (Oriental/Open)
House (Oriental)
House (Oriental)
House (Oriental)
House (Oriental)
Tall House (Oriental)
Tall House (Oriental)
Tall House (Oriental)
Tall House (Oriental)
Tall House (Oriental)
House
House
House
House
House
House
House
House (Classic)
Little House
Old House
Red House
Red House
Red House
City House (yellow)
House
House
House
House
House
House
House
House
House
House
Houseblock (small)
Houseblock (middle)

Land_sara_domek_zluty_bez
Land_OrlHot
Land_Panelak
Land_Panelak2
Land_Panelak3
Land_Hotel
Land_Hotel_ruins
Land_hotel_riviera1
Land_hotel_riviera2
Land_hotel_riviera1_ruins
Land_hotel_riviera2_ruins
Land_house_y
Land_dum_olez_istan1
Land_dum_olez_istan2
Land_dum_olez_istan2_maly
Land_dum_olez_istan2_maly2
Land_dum_istan2
Land_dum_istan2b
Land_dum_istan2_01
Land_dum_istan2_02
Land_dum_istan2_03
Land_dum_istan2_03a
Land_dum_istan2_04a
Land_dum_istan3
Land_dum_istan3_hromada
Land_dum_istan3_hromada2
Land_dum_istan3_pumpa
Land_dum_mesto3_istan
Land_dum_istan4
Land_dum_istan4_big
Land_dum_istan4_big_inverse
Land_dum_istan4_detaily1
Land_dum_istan4_inverse
Land_dumruina
Land_dumruina_mini
Land_sara_domek_kovarna
Land_dum_rasovna
Land_Statek_kulna
Land_stanice
Land_ryb_domek
Land_statek_hl_bud
Land_bouda1
Land_sara_domek_ruina
Land_cihlovej_dum
Land_cihlovej_dum_in
Land_cihlovej_dum_mini
Land_kasarna_rohova
Land_sara_domek05
Land_sara_zluty_statek_in
Land_sara_Domek_sedy
Land_dum_mesto2
Land_sara_domek_sedy_bez
Land_sara_domek_rosa
Land_sara_zluty_statek
Land_sara_domek_zluty
Land_sara_domek_zluty_bez
Land_OrlHot
Land_Panelak
Land_Panelak2

84

Type Description Class Name
Houseblock (big)
Hotel
Hotelruin
Holiday-In
Holiday-In
Holiday-In-Ruin
Holiday-In-Ruin
Weekend Flat
House (Oriental)
House (Oriental)
House (Oriental)
House (Oriental)
House (Oriental/Open)
House (Oriental/Open)
House (Oriental)
House (Oriental)
House (Oriental)
House (Oriental)
House (Oriental)
House (Oriental/Open)
House (Oriental)
House (Oriental)
House (Oriental)
House (Oriental)
Tall House (Oriental)
Tall House (Oriental)
Tall House (Oriental)
Tall House (Oriental)
Tall House (Oriental)
House
House
House
House
House
House
House
House (Classic)
Little House
Old House
Red House
Red House
Red House
City House (yellow)
City House (yellow)
City House (yellow)
City House (yellow)
Pub
Building
Landhouse
Landhouse
Landhouse
Landhouse
City House (Classic)
City House (Classic)
House with
House
House (long)
House (flat)
Big House

Houseblock (big)
Hotel
Hotelruin
Holiday-In
Holiday-In
Holiday-In-Ruin
Holiday-In-Ruin
Weekend Flat
House (Oriental)
House (Oriental)
House (Oriental)
House (Oriental)
House (Oriental/Open)
House (Oriental/Open)
House (Oriental)
House (Oriental)
House (Oriental)
House (Oriental)
House (Oriental)
House (Oriental/Open)
House (Oriental)
House (Oriental)
House (Oriental)
House (Oriental)
Tall House (Oriental)
Tall House (Oriental)
Tall House (Oriental)
Tall House (Oriental)
Tall House (Oriental)
House
House
House
House
House
House
House
House (Classic)
Little House
Old House
Red House
Red House
Red House
City House (yellow)
City House (yellow)
City House (yellow)
City House (yellow)
Pub
Building
Landhouse
Landhouse
Landhouse
Landhouse
City House (Classic)
City House (Classic)
House with
House
House (long)
House (flat)
Big House

Land_Panelak3
Land_Hotel
Land_Hotel_ruins
Land_hotel_riviera1
Land_hotel_riviera2
Land_hotel_riviera1_ruins
Land_hotel_riviera2_ruins
Land_house_y
Land_dum_olez_istan1
Land_dum_olez_istan2
Land_dum_olez_istan2_maly
Land_dum_olez_istan2_maly2
Land_dum_istan2
Land_dum_istan2b
Land_dum_istan2_01
Land_dum_istan2_02
Land_dum_istan2_03
Land_dum_istan2_03a
Land_dum_istan2_04a
Land_dum_istan3
Land_dum_istan3_hromada
Land_dum_istan3_hromada2
Land_dum_istan3_pumpa
Land_dum_mesto3_istan
Land_dum_istan4
Land_dum_istan4_big
Land_dum_istan4_big_inverse
Land_dum_istan4_detaily1
Land_dum_istan4_inverse
Land_dumruina
Land_dumruina_mini
Land_sara_domek_kovarna
Land_dum_rasovna
Land_Statek_kulna
Land_stanice
Land_ryb_domek
Land_statek_hl_bud
Land_bouda1
Land_sara_domek_ruina
Land_cihlovej_dum
Land_cihlovej_dum_in
Land_cihlovej_dum_mini
Land_kasarna_rohova
Land_kasarna_brana
Land_kasarna
Land_kasarna_prujezd
Land_hospoda_mesto
Land_skola
Land_deutshe
Land_deutshe_mini
Land_domek_rosa
Land_dum_m2
Land_dum_mesto
Land_dum_mesto_in
Land_dum_mesto2l
Land_dum_mesto3
Land_dum_olezlina
Land_dum01
Land_dum02

85

C
h

ap
ter

3

Type Description Class Name
House
House
Villa
Convent Building (Corner)
Convent Building
Garage
Garage
Garage
Beach Hut
Beach Hut
Beach Hut (open)
Beach Hut
Beach Hut
Holiday Hut
Little Hut
Little Shanty
Shelter (little)
Shanty
Latrine
Big Barn (closed)
Big Barn (open)
Barn
Barn (open)
Barn (Closed)
Barn (open)
Old Barn
Building (burned)
Houseruin (burned)
Houseruin (burned)
Houseruin (burned)
Pubruin (burned)
Houseruin
Houseruin
Houseruin
Houseruin (open)
Churchruin
Bus Stop
Bus Stop 2
Market Stall
Market Stall 1
Market Stall 2
Military Shelter
Military Building (open)
Military Building (little)
Military Building (open)
Military Building (closed)
Military Building (open)
Bus Stop
Ammunition Bunker
Ammunition Bunker
Ammunition Bunker
Metal Tower
Wood Tower
Metal Tower
Airport Tower
Military Building
Military Building
Military Building
Military Building

House
House
Villa
Convent Building (Corner)
Convent Building
Garage
Garage
Garage
Beach Hut
Beach Hut
Beach Hut (open)
Beach Hut
Beach Hut
Holiday Hut
Little Hut
Little Shanty
Shelter (little)
Shanty
Latrine
Big Barn (closed)
Big Barn (open)
Barn
Barn (open)
Barn (Closed)
Barn (open)
Old Barn
Building (burned)
Houseruin (burned)
Houseruin (burned)
Houseruin (burned)
Pubruin (burned)
Houseruin
Houseruin
Houseruin
Houseruin (open)
Churchruin
Bus Stop
Bus Stop 2
Market Stall
Market Stall 1
Market Stall 2
Military Shelter
Military Building (open)
Military Building (little)
Military Building (open)
Military Building (closed)
Military Building (open)
Bus Stop
Ammunition Bunker
Ammunition Bunker
Ammunition Bunker
Metal Tower
Wood Tower
Metal Tower
Airport Tower
Military Building
Military Building
Military Building
Military Building

Land_sara_domek_hospoda
Land_sara_domek_podhradi_1
Land_sara_domek_vilka
Land_sara_dum_podloubi03klaster
Land_sara_dum_podloubi03rovny
Land_sara_hasic_zbroj
Land_garaz
Land_garaz_mala
Land_hut01
Land_hut02
Land_hut03
Land_hut04
Land_hut06
Land_ZalChata
Land_psi_bouda
Land_bouda2_vnitrek
Land_kulna
Land_bouda3
Land_KBud
Land_stodola_old
Land_stodola_old_open
Land_strazni_vez
Land_sara_stodola
Land_sara_stodola2
Land_sara_stodola3
Land_hut_old02
Land_afbarabizna
Land_afdum_mesto2
Land_afdum_mesto2L
Land_afdum_mesto3
Land_afhospoda_mesto
Land_dulni_bs
Land_dum_zboreny
Land_dum_zboreny_total
Land_hruzdum
Land_kostel_trosky
Land_zastavka_jih
Land_zastavka_sever
Land_stanek_1
Land_stanek_1B
Land_stanek_1C
Land_army_hut_storrage
Land_army_hut_int
Land_army_hut2
Land_army_hut2_int
Land_army_hut3_long
Land_army_hut3_long_int
Land_aut_zast
Land_garaz_s_tankem
Land_garaz_bez_tanku
Land_ammostore2
Land_hlaska
Land_posed
Land_vez
Land_letistni_hala
Land_budova1
Land_budova2
Land_budova3
Land_budova4

86

Type Description Class Name
Military Building
Guardhouse
Military Hospital
Repair Center
Hangar (green)
Hangar (grey)
Hangar
Hangar ruin
Fuelstop (small)
Fuelstop (small)
Fuelstop (big)
Fuelstop (Military)
Factory
Factory
Tall Tower
Metall Hut
Little Metal Hut
Glass Tower
Transformer Station
Transformer Station
Radiotower
Radiotower
Radiotower
Water Tower
Silo
Lighthouse
Lighthouse
Lighthouse with podest
Lighthousepodest
Harbour piece
Harbour piece
Harbour piece
Bridge with roof
Bridge
Bridge (end)
Fence
Fencegate
Wall
Stonegate
Archway
Archway
Stonefence
Woodfence
Basefence (camo)
Basefence (grey)
Basefence (Desert)
Stoplight
Stoplight 2
Landfield light
Landfield light
Landfield light
Landfield light
Power supply line
Electricity pylon
Power supply line
Power supply line
Ladder (big)
Scaffold
Scaffold

Military Building
Guardhouse
Military Hospital
Repair Center
Hangar (green)
Hangar (grey)
Hangar
Hangar ruin
Fuelstop (small)
Fuelstop (small)
Fuelstop (big)
Fuelstop (Military)
Factory
Factory
Tall Tower
Metall Hut
Little Metal Hut
Glass Tower
Transformer Station
Transformer Station
Radiotower
Radiotower
Radiotower
Water Tower
Silo
Lighthouse
Lighthouse
Lighthouse with podest
Lighthousepodest
Harbour piece
Harbour piece
Harbour piece
Bridge with roof
Bridge
Bridge (end)
Fence
Fencegate
Wall
Stonegate
Archway
Archway
Stonefence
Woodfence
Basefence (camo)
Basefence (grey)
Basefence (Desert)
Stoplight
Stoplight 2
Landfield light
Landfield light
Landfield light
Landfield light
Power supply line
Electricity pylon
Power supply line
Power supply line
Ladder (big)
Scaffold
Scaffold

Land_budova4_in
Land_budova5
Land_hospital
Land_repair_center
Land_SS_hangar
Land_SS_hangarD
Land_hangar_2
Land_SS_hangar_ruins
FuelStation
Land_fuelstation
Land_benzina_schnell
Land_fuelstation_army
Land_Tovarna1
Land_Tovarna2
Land_komin
Land_Hlidac_budka
Land_bouda_plech
Land_strazni_vez
Land_trafostanica_velka
Land_trafostanica_mala
Land_Vysilac_FM
Land_vysilac_FM2
Land_telek1
Land_watertower1
Land_Nasypka
Land_majak
Land_majak2
Land_majak_v_celku
Land_majak_podesta
Land_molo_beton
Land_molo_krychle
Land_molo_krychle2
Land_molo_drevo
Land_molo_drevo_bs
Land_molo_drevo_end
Land_pletivo_dira
Land_plot_zed_drevo1_branka
Land_plot_istan1b_hole
Land_plot_istan1_rovny_gate
Land_brana02
Land_brana02nodoor
Land_plot_zboreny
Land_Plot_Ohrada_Pruchozi
Land_zed_dira
Land_zed_dira_desert
Land_zed_dira_civil
Land_Stoplight01
Land_Stoplight02
Land_Runway_PAPI
Land_Runway_PAPI_2
Land_Runway_PAPI_3
Land_Runway_PAPI_4
Land_trafostanica_velka_draty
Land_sloup_vn
Land_sloup_vn_dratZ
Land_sloup_vn_drat
Land_ladder
Land_leseni2x
Land_leseni4x

87

C
h

ap
ter

3

Type Description Class Name
Castletower
Castlewall
Castlewall
Castlewall
Castlewall
Wall with door
Wall ruin
Wall ruin
Wall with gate (closed)
Wall with gate (open)
Fountain
Oil pump
Citywall
Citywall
Citywall
Citywall
Citywall
Citywall
Citywall
Citywall
Citywall
Citywall
Citywall
Stoned area
Stoned area
Scrapheap
Scrapheap
Scrapheap
Minaret
Old Silo Bam - Sawmill
Old Silo Bam - Sawmill
Big Carport
Big Carport with camo net
Tower with searchlight
Camouflaged water tower
Aircraft Factory
Aircraft Factory (West)
Aircraft Factory (SLA)
Airport
Barracks
Barracks (West)
Barracks (East)
Camp
Contruction Site (West)
Contruction Site (West)
Contruction Site (East)
Contruction Site (East)
Crate
Depot
Headquarters (West)
Headquarters (East)
HeavyFactory
HeavyFactory (West)
HeavyFactory (East)
LightFactory
LightFactory (West)
LightFactory (East)
Mobile HQ (West) M113
Mobile HQ (East) BMP2

Castletower
Castlewall
Castlewall
Castlewall
Castlewall
Wall with door
Wall ruin
Wall ruin
Wall with gate (closed)
Wall with gate (open)
Fountain
Oil pump
Citywall
Citywall
Citywall
Citywall
Citywall
Citywall
Citywall
Citywall
Citywall
Citywall
Citywall
Stoned area
Stoned area
Scrapheap
Scrapheap
Scrapheap
Minaret
Old Silo Bam - Sawmill
Old Silo Bam - Sawmill
Big Carport
Big Carport with camo net
Tower with searchlight
Camouflaged water tower
Aircraft Factory
Aircraft Factory (West)
Aircraft Factory (SLA)
Airport
Barracks
Barracks (West)
Barracks (East)
Camp
Contruction Site (West)
Contruction Site (West)
Contruction Site (East)
Contruction Site (East)
Crate
Depot
Headquarters (West)
Headquarters (East)
HeavyFactory
HeavyFactory (West)
HeavyFactory (East)
LightFactory
LightFactory (West)
LightFactory (East)
Mobile HQ (West) M113
Mobile HQ (East) BMP2

Land_helfenburk
Land_helfenburk_brana
Land_helfenburk_budova2
Land_helfenburk_cimburi
Land_helfenburk_zed
Land_zidka_branka
Wallend
Land_zidka03
Land_statek_brana
Land_statek_brana_open
Land_pumpa
Land_vez_ropa
Land_podesta_1_cube
Land_podesta_1_cube_long
Land_podesta_1_cornl
Land_podesta_1_cornp
Land_podesta_1_mid_cornl
Land_podesta_1_mid_cornp
Land_podesta_1_mid
Land_podesta_1_stairs
Land_podesta_1_stairs2
Land_podesta_1_stairs3
Land_podesta_1_stairs4
Land_podesta_5
Land_podesta_10
Land_AFbarabizna_ruins
Land_AFDum_mesto2_ruins
Land_AFDum_mesto2L_ruins
Land_R_Minaret
Land_Kamenolom_budova
Land_pila
Land_pristresek
Land_pristresek_camo
Land_Vez_svetla
Land_vodni_vez
WarfareBAircraftFactory
WarfareBWestAircraftFactory
WarfareBEastAircraftFactory
WarfareBAirport
WarfareBBarracks
WarfareBWestBarracks
WarfareBEastBarracks
WarfareBCamp
WarfareBWestContructionSite
WarfareBWestContructionSite1
WarfareBEastContructionSite
WarfareBEastContructionSite1
WarfareBCrate
WarfareBDepot
WarfareBWestHeadquarters
WarfareBEastHeadquarters
WarfareBHeavyFactory
WarfareBWestHeavyFactory
WarfareBEastHeavyFactory
WarfareBLightFactory
WarfareBWestLightFactory
WarfareBEastLightFactory
M113_MHQ_unfolded
BMP2_MHQ_unfolded

88

Type Description Class Name
Bare tree
Banana tree
Banana tree
Banana tree
Banana tree
Thistles
High grasses
Cep
Flowers
Brake
Desert grass
Gras flowers
Grass
Long grass
White flowers
Grass
Yellow flowers
Mushroom
Fly agaric
Fly agaric
Mushroom
Flowers
Grass
White flowers
Tall conifer
Tall conifer
Bush
Bush
Desert grass
Mixed grass
Tree
Tree
Leaves
Small bush
Middle bush
small bush
Mini bush
Grass bush
Double grass

Bare tree
Banana tree
Banana tree
Banana tree
Banana tree
Thistles
High grasses
Cep
Flowers
Brake
Desert grass
Gras flowers
Grass
Long grass
White flowers
Grass
Yellow flowers
Mushroom
Fly agaric
Fly agaric
Mushroom
Flowers
Grass
White flowers
Tall conifer
Tall conifer
Bush
Bush
Desert grass
Mixed grass
Tree
Tree
Leaves
Small bush
Middle bush
small bush
Mini bush
Grass bush
Double grass

AAPL000
AAPL001
AAPL002
AAPL003
AAPL004
AAPL005
AAPL006
AAPL007
AAPL008
AAPL009
AAPL010
AAPL011
AAPL012
AAPL013
AAPL014
AAPL015
AAPL016
AAPL017
AAPL018
AAPL019
AAPL020
AAPL021
AAPL022
AAPL023
AAPL024
AAPL025
AAPL026
AAPL027
AAPL028
AAPL029
AAPL030
AAPL031
AAPL032
AAPL033
AAPL034
AAPL035
AAPL036
AAPL037
AAPL038

3.12 - The plant classes

Type Description Class Name
Hesco Site
Hesco 5x
Hesco 10x
Hesco 10x Tall
Sandbag Site
Nest
Low Nest
MG Nest M240 (West)
MG Nest PK (SLA)
MG Nest_M240 (Resistance)
MG Static M2 (Resistance)

Hesco Site
Hesco 5x
Hesco 10x
Hesco 10x Tall
Sandbag Site
Nest
Low Nest
MG Nest M240 (West)
MG Nest PK (SLA)
MG Nest_M240 (Resistance)
MG Static M2 (Resistance)

WarfareBHescoSite
WarfareBHesco5x
WarfareBHesco10x
WarfareBHesco10xTall
WarfareBSandbagSite
WarfareBNest
WarfareBLowNest
WarfareBWestMGNest_M240
WarfareBEastMGNest_PK
WarfareBResistanceMGNest_M240
WarfareBResistanceM2StaticMG

89

C
h

ap
ter

3

Type Description Class Name
Stocks of a trees
Stocks of a trees
Stock of a tree
Grass
Middle bush
Tall bush
Long bush
Small bush
Long bush
Big tree
Big tree
Big tree
Middle tree
Tall conifer
Tall conifer
Big leave grass
Bush tree
Middle palm tree
Middle palm tree
Middle palm tree
Middle palm tree
Double palm tree
Palm bush
Tall palm tree
Middle palm tree
Tree stump
Tree stump
Conifer bush
Small conifer
Broad conifer
Tall conifer
Birch tree
Tree
Tree
Tree
Small tree
Middle decoration tree
Small tree
Small tree
Tree
Small tree
Tree
Small tree
Small bush
Willow
Birch tree
Birch tree
Bush tree
Tree
Bush tree
Small bush
Tall decoration tree
Avenue tree
Avenue tree
Branchwood
Branchwood
Branchwood
Branchwood

Stocks of a trees
Stocks of a trees
Stock of a tree
Grass
Middle bush
Tall bush
Long bush
Small bush
Long bush
Big tree
Big tree
Big tree
Middle tree
Tall conifer
Tall conifer
Big leave grass
Bush tree
Middle palm tree
Middle palm tree
Middle palm tree
Middle palm tree
Double palm tree
Palm bush
Tall palm tree
Middle palm tree
Tree stump
Tree stump
Conifer bush
Small conifer
Broad conifer
Tall conifer
Birch tree
Tree
Tree
Tree
Small tree
Middle decoration tree
Small tree
Small tree
Tree
Small tree
Tree
Small tree
Small bush
Willow
Birch tree
Birch tree
Bush tree
Tree
Bush tree
Small bush
Tall decoration tree
Avenue tree
Avenue tree
Branchwood
Branchwood
Branchwood
Branchwood

AAPL039
AAPL040
AAPL041
AAPL042
AAPL043
AAPL044
AAPL045
AAPL046
AAPL047
AAPL048
AAPL049
AAPL050
AAPL051
AAPL052
AAPL053
AAPL054
AAPL055
AAPL056
AAPL057
AAPL058
AAPL059
AAPL060
AAPL061
AAPL062
AAPL063
AAPL064
AAPL065
AAPL066
AAPL067
AAPL068
AAPL069
AAPL070
AAPL071
AAPL072
AAPL073
AAPL074
AAPL075
AAPL076
AAPL077
AAPL078
AAPL079
AAPL080
AAPL081
AAPL082
AAPL083
AAPL084
AAPL085
AAPL086
AAPL087
AAPL088
AAPL089
AAPL090
AAPL091
AAPL092
AAPL093
AAPL094
AAPL095
AAPL096

90

Type Description Class Name
Clutter Stone Small
Granite stone
Sandstone (big)
Sandstone (big)
Limestone (big)
Limestone (big)
Sandstone (big)
Limestone (middle)
Limestone (middle)
Sandstone (big)
Limestone (middle)
Limestone (middle)
Sandstone (middle)
Limestone (middle)
Limestone (middle)
Sandstone (middle)
Limestone (middle)
Limestone (middle)
Sandstone (little)
Granite stones
Granite stones
Limestone rock (little)
Limestone rock (big)
Limestone rock (big)
Limestone rock (big)
Limestone rock (big)
Sandstone (little)
Sandstone (little)
Sandstone (little)
Sandstone (little)
Sandstone (little)
Sandstone (little)
Sandstone (middle)
Sandstone (little)
Sandstone (little)
Sandstone (little)
Sandstone (little)
Sandstone (little)
Sandstone (middle)
Sandstone (middle)
Sandstone (middle)
Sandstone (middle)
Sandstone (middle)
Limestone rock (big)
Limestone rock (big)
Sandstone (little)
Limestone (middle)
Sandstone (little)
Sandstone (little)
Sandstone (little)
Sandstone (little)

Clutter Stone Small
Granite stone
Sandstone (big)
Sandstone (big)
Limestone (big)
Limestone (big)
Sandstone (big)
Limestone (middle)
Limestone (middle)
Sandstone (big)
Limestone (middle)
Limestone (middle)
Sandstone (middle)
Limestone (middle)
Limestone (middle)
Sandstone (middle)
Limestone (middle)
Limestone (middle)
Sandstone (little)
Granite stones
Granite stones
Limestone rock (little)
Limestone rock (big)
Limestone rock (big)
Limestone rock (big)
Limestone rock (big)
Sandstone (little)
Sandstone (little)
Sandstone (little)
Sandstone (little)
Sandstone (little)
Sandstone (little)
Sandstone (middle)
Sandstone (little)
Sandstone (little)
Sandstone (little)
Sandstone (little)
Sandstone (little)
Sandstone (middle)
Sandstone (middle)
Sandstone (middle)
Sandstone (middle)
Sandstone (middle)
Limestone rock (big)
Limestone rock (big)
Sandstone (little)
Limestone (middle)
Sandstone (little)
Sandstone (little)
Sandstone (little)
Sandstone (little)

AARO000
AARO001
AARO002
AARO003
AARO004
AARO005
AARO006
AARO007
AARO008
AARO009
AARO010
AARO011
AARO012
AARO013
AARO014
AARO015
AARO016
AARO017
AARO018
AARO019
AARO020
AARO021
AARO022
AARO023
AARO024
AARO025
AARO026
AARO027
AARO028
AARO029
AARO030
AARO031
AARO032
AARO033
AARO034
AARO035
AARO036
AARO037
AARO038
AARO039
AARO040
AARO041
AARO042
AARO043
AARO044
AARO045
AARO046
AARO047
AARO048
AARO049
AARO050

3.13 - The rock classes

91

C
h

ap
ter

3

Type Description Class Name
Cyclist ahead!
Walkers ahead!
Walkers ahead! (old)
Double bend L ahead! (old)
Double bend L ahead!
Double bend R ahead! (old)
Double bend R ahead!
Right of Way (old)
Right of Way End (old)
Right of Way End
Right of Way
Military Sign (SLA/RACS)
Military Sign (SLA)
Military Sign (RACS)
Picnic area
Camping ground
Not attached curb ahead!
Rustle shoot ahead! (old)
Rustle shoot ahead!
Cross-way ahead! (old)
Right of way ahead! (old)
Right of way ahead!
Cross-way ahead!
Air traffic ahead! (old)
Air traffic ahead!
Ahead!
First aid (old)
First aid
Gravel ahead!
Roadway repair service (old)
Roadway repair service
Rockfall ahead (old)
Rockfall ahead
Parking place (old)
Parking place
Ahead!
Direction panel L
Direction panel R
Road works ahead!
Crosswalk ahead!
Right of way ahead! (old)
Right of way ahead!
Gas station (old)
Gas station
Straightforward
RoadCone
RoadBarrierlong
RampConcrete

Cyclist ahead!
Walkers ahead!
Walkers ahead! (old)
Double bend L ahead! (old)
Double bend L ahead!
Double bend R ahead! (old)
Double bend R ahead!
Right of Way (old)
Right of Way End (old)
Right of Way End
Right of Way
Military Sign (SLA/RACS)
Military Sign (SLA)
Military Sign (RACS)
Picnic area
Camping ground
Not attached curb ahead!
Rustle shoot ahead! (old)
Rustle shoot ahead!
Cross-way ahead! (old)
Right of way ahead! (old)
Right of way ahead!
Cross-way ahead!
Air traffic ahead! (old)
Air traffic ahead!
Ahead!
First aid (old)
First aid
Gravel ahead!
Roadway repair service (old)
Roadway repair service
Rockfall ahead (old)
Rockfall ahead
Parking place (old)
Parking place
Ahead!
Direction panel L
Direction panel R
Road works ahead!
Crosswalk ahead!
Right of way ahead! (old)
Right of way ahead!
Gas station (old)
Gas station
Straightforward
RoadCone
RoadBarrierlong
RampConcrete

AASI012
AASI015
AASI016
AASI019
AASI020
AASI021
AASI022
AASI025
AASI026
AASI027
AASI028
AASI169
AASI181
AASI186
AASI189
AASI190
AASI195
AASI196
AASI197
AASI198
AASI199
AASI200
AASI201
AASI204
AASI205
AASI259
AASI260
AASI261
AASI268
AASI273
AASI274
AASI275
AASI276
AASI277
AASI278
AASI283
AASI284
AASI285
AASI286
AASI287
AASI288
AASI289
AASI290
AASI291
AASI292
RoadCone
RoadBarrier_long
RampConcrete

3.14 - The sign classes

By using the following Syntax, one will have the possibility to get the different weapon
and magazine types displayed as an on screen information text. To do this for the weapon
types, just use:

hint format ["%1", weapons this];
hint format ["%1", weapons Name];

and for the magazine types:

hint format ["%1", magazines this];

One also has the possibility to get additional information - such as which unit has fired
with what kind of ammunition - displayed on the screen. The following details will be
displayed:

Name of the unit
The weapon type
The bullet type
The way of firing (single fire/burst)

Once the unit in the game has fired its weapon, this text will appear on the screen:

To do this it's recommended to use an event handler which will be used to define the
syntax in the init. line of a unit as shown in the example below:

this addEventHandler ["Fired", {hint format ["%1", _this]}]

All of this can be used with names for external scripts as well:

Name addEventHandler ["Fired", {hint format ["%1", _this]}]

Some Situation requires the checking whether a special unit has a special Weapon. This
information can also be used as condition for further situations or other things.

To do this use the following Syntax:

Player hasWeapon "M4" or in a Script ? Player hasWeapon "M4"

92

3.15 - Getting weapon and magazine types displayed

3.16 - Getting fired type

3.17 - Does unit have a weapon?

Two Syntaxes as further examples:

?! (Player hasWeapon "M4") : hint "The Player has lost his Weapon!"

? (Player hasWeapon "M4") : hint "The Player has lost his Weapon!"

The first Syntax will cause a hint which will inform the user that the Player character has
lost his weapon while the second Syntax informs about the fact that the Character got his
Weapon back again.

Even the primary weapon of a unit can always get asked or used as condition for
something’s as well. Actually the same things can be realized by using the hasWeapon
command. Some examples can be seen below:

Getting primary or secondary weapon displayed:

hint format ["%1", primaryWeapon Player];

hint format ["%1", secondaryWeapon Player];

Primary or secondary weapons used as condition:

? (primaryWeapon Player != "M4") : hint "The Player has no M4!"

? (primaryWeapon Player == "M4") : hint "The Player has no M4!"

? (secondaryWeapon Player != "Stinger") : hint "The Player has no M4!"

The following Syntax will inform the user whether the unit has ammunition left or not.
Doesn’t he still have a Magazine, so the Variable will be set to true. And this fact can be
used as a further condition for something else’s.

?!(someAmmo Player) : hint "The Player hasn’t any ammunition left!"

?(someAmmo Player) : hint "The player does still have ammunition!"

hint format ["%1", someAmmo Player];

This command will prohibit a unit to reload the weapon if the magazine is empty:

Name enableReload false

Mines can be simply created at any position on the map by using the following Syntax

Mine = createMine ["MineMine", position player, [], 0]

C
h

ap
ter

3

93

3.20 - Creating mines

3.19 - Does unit have ammunition?

3.18 - Primary or secondary weapon of a unit

It’s not possible to create weapons or magazines just for fun. To do this a special option
called Weapon holder command is required. A Weapon holder is similar to a Ammo Box,
the only difference is that this weapon holder is invisible. This one can be equipped now
with Weapons and Magazines by using the same commands which are used to edit a
Ammo Box. Once the Weapons and Magazines have been created they will lie on the
ground and get picked up by the Player.

Now one is free decide to select a position where the Weapons and or Magazines have to
be created. For example on a XYZ Position or at the Position of an Object.

One can see some examples below:

Weapon1 = "weaponHolder" createVehicle getpos Object1

Weapon1 = "weaponHolder" createVehicle position Player

Weapon1 = "weaponHolder" createVehicle [x,y,z]

Once the Weapon holder has been created so one only needs to allocate him the weapons
and magazines. This can be done by using the already known AddCargo command.

Weapon1 addMagazineCargo ["10Rnd_127x99_M107",2];

Weapon1 addWeaponCargo ["m107",1];

It’s also possible to align the Weapon holder in a special direction or lift him up in a special
height. For example if one wants to get a weapon created on a Ammo box or a table or
something’s else.

To define the directions use the known SetDir-Syntax:

Weapon1 setDir Value

And as expected use the setpos getpos command to define the height:

Weapon1 setPos [getPos Weapon1 select 0,getPos Weapon1 select 1,Value]

Ingame it would look like this:

94

3.21 - Creating weapons and magazines

95

By using the following Syntaxes its possible to get the direction of a weapon displayed.
This information can be used for a further condition. This possibility will mostly be used
for Vehicles or tanks or something’s similar to get the direction of the respective Weapon.

The following Syntaxes will display the XYZ values:

hint format ["View Direction: %1", Name weaponDirection "M56"]

hint format ["%1", Name weaponDirection primaryWeapon Name]

The following example will display the height only:

hint format ["%1", Name weaponDirection "M56" select 2]

hint format ["%1", Name weaponDirection primaryWeapon Name select 2]

This explains as follows. X requires select 0, Y requires select 1, and Z requires select 2.

If one wants to use this possibility within a script, one needs to define this syntax as follows:

_dir = _unit weaponDirection "ClassName" select 0

? _dir <= Value : hint "Wrong Fire Direction!"

Sectoring the XYZ-Values

_Direction = Name weaponDirection primaryWeapon Name
_xDir = _Direction select 0
_yDir = _Direction select 1
_zDir = _Direction select 2

C
h

ap
ter

3

3.22 - Getting weapon direction view displayed

Chapter 4
- The Mission -

After you have learned the user interface, the files and the weapons in the first 3 chapters,
we’ll enter a new section now - The mission design. Here you’ll learn how to start a
mission, define the targets, the fulfilment measures assessed, and finally finishing the
mission successfully.

4.1 The mission name 97
4.2 The mission start 97
4.3 The mission accessories 98
4.4 The mission appraisal 99
4.5 The mission targets 99
4.6 Finishing a mission 101
4.7 Saving a mission

96

If the user creates a new map, he should name the mission in the Intel menu. This is not
quite necessary but useful, because this makes the mission display with its real name.
If one does not do that, the mission would be displayed with its island name. The mission
name will look like this:

The example mission is called Beispielmission. The first one is displayed by its real name
because it has been defined in Intel menu. The second one hasn’t been defined, so you
can see what happens to the mission name in the mission selection menu.

The game offers the possibility to display time of day and a headline in an individual style
while the mission is loading. The text which shall be displayed is up to the user but it
shouldn’t be too long. To make the time of day and the desired text lines display, the
description.ext needs be edited. If this file doesn’t exist in your mission folder, it has to be
created. (You’ll get more information about this in Chapter 2.3 - The Description.ext.)

To predefine the text and the time of day just enter following syntaxes in the head of the
description.ext:

oonnLLooaaddIInnttrroo == MMrr--MMuurrrraayy pprroouuddllyy pprreesseennttss
oonnLLooaaddMMiissssiioonn == CCoonnvvooyy AAttttaacckk

oonnLLooaaddIInnttrrooTTiimmee == ttrruuee respective ffaallssee or 11 resp. 00
oonnLLooaaddMMiissssiioonnTTiimmee == ffaallssee

If one doesn’t want both things to be displayed, the values just have to be set to 0 or false
behind the quotes and the text underneath the clock will no longer be displayed.

97

C
h

ap
ter 4

4.1 - The mission name

4.2 - The mission start

It's also possible to define the text in the stringtable.csv, that would look like this:

onLoadIntro = $STR_Missionstart

You can find more information about the stringtable.csv in Chapter 2.4.

The user has the possibility to determine whether certain mission accessories are to be
enabled in the mission or not. To do this, further things need to be defined in the
description.ext as well.

To display each used accessories the number 1 or 0 respective false or true are needed
again. As follows the list of the orders:

ShowGPS = 1; - GPS

ShowCompass = 1; - Compass

ShowRadio = 1; - Radio

ShowMap = 1; - Map

ShowNotePad = 1; - Briefing

ShowWatch = 1; - Clock

ShowDebriefing = 1; - Debriefing

Since the Version 1.08 it´s possible now to disable these components completely, without
an entry within the description.ext. That wasn’t able in the earlier ArmA© and OFP© Versions.
To do this, just set the respective value on true or even false.

ShowMap true

98

4.3 - The mission accessories

As in most games, the player can receive points for reaching targets. This is possible in
ArmA© as well. To enable that option just define the necessary commands in the
description.ext. The number of the receiving points is variable and can be freely defined
by the user. The respective part in the description.ext looks like as follows:

minScore=200 - The least scores
avgScore=3000 - The middle scores
maxScore=6000 - The highest scores

The player will automatically receive points for each enemy unit killed. If one wants the
player to receive extra points for completing a special objective at some point in the
mission, the following syntax is needed:

Player addRating Value

It's also possible to remove points from the player, for example, if the player destroys a
facility which he is actually supposed to protect. To do this use the syntax above and add
a - (minus) in front of the value only.

Player addRating -Value

If one wants to receive a point status when the player has received a certain number of
points, (for example, to end the mission) then one only has to place a trigger on the map
with following conditions: (Axis a/b = 0), and write in the condition line:

Rating Player > Value or Rating Player >= Value

Select End1 out of the Types. If the player reaches this value, the mission will end and the
briefing will display the results.

The most important things of a mission are the targets. No targets - no mission; so the
targets need to be defined early.

The mission targets can be defined as explained in Chapter 2.13 - The Briefing.html,
and if one likes, it’s also possible to hide them as explained in Chapter 2.5 - The Init.sqs.

Hidden targets have to be defined and configured on the map just as the visible targets
are. Hiding a target means that the target is not visible for the player in the briefing and
on the map, but when the player has accomplished a target, it will appear on the map.

99

C
h

ap
ter 4

4.4 - The mission appraisal

4.5 - The mission targets

Example mission
The player reads in his orders that he has to "hit-and-run this village". The second order,
"destroy the ammunition truck", is still invisible because of the entry in the Init.sqs. If the
village has been cleared of all enemy units, the first objective will be marked with a green
check mark and the second target will become visible.

To do this just set a trigger on the map right over the respective village. Conditions: Axis
(a/b) 300, onActivation (the side which has to protect the village), and not present. The
trigger will execute now when the side which protects the village is no longer alive (not
present).

The necessary commands which are to be executed when the village is free of enemy
units, have to be entered In the onActivation line. “Check target 1” and “make target 2
visible again” are a part of this command. It’s recommended to add a hint to the
command to give some information to the player. So use following syntax:

"1" ObjStatus "Done"; "2" ObjStatus "Visible"; hint "Missionsplan updated!"

The user has to set a marker directly over the village on the map and name it "TargetX".
The cross-hair will move to that marker if the player is clicking the link "This village" in the
briefing.

You can also check Chapter 2.13 to get further information about he necessary
commands which are to be used in the briefing.html.

The necessary entry in the Init.sqs, which is used hide the second mission target, needs
to be defined as "2" ObjStatus "Hidden".

The following are the different commands which are used for each mission status:

Hidden - The mission target will be hidden

Visible - The mission target will be visible again

Active - The mission target is active

Done - The mission target is done

Failed - The mission has been failed.

100

<p>

Capture this village!
</p>
<hr>
<p>
Destroy the ammunition Truck!
</p>
<hr>

C
h

ap
ter 4

When the player has reached all targets then the mission has been finished. There are
several possibilities to end a mission of course. Those endings are up to the story, the
targets, and of course, the mission. Here you can see some examples of how to end a
mission:

Checking the status of a unit within a local view

Checking the status of a unit within a global view

101

One can see several units in the image to the
right. The APC has to be destroyed for the
trigger to be executed. This one has been
connected with a trigger by pressing the 2 key.
The trigger has been defined as follows:

Axis a/b: 50
Type: End #1
Activation: not present

In local view, the mission will end if the APC is
destroyed or if it leaves the trigger area. What if
the mission should end if the APC is destroyed,
but not when the APC leaves the trigger area?
This is when a global view should be used.

To do this, one has to set a trigger again but this
trigger does not have a bordered area. So we
have different settings compared to the local
view:

Axis a/b: 0
Type: End #1
Condition: ! (alive Tank1)

Our APC has been renamed to Tank1 and the
trigger was set up to the global view with both
Axis a and b set to 0. You can set the trigger
on any place on the map, because it will now
check the whole map to find out if Tank1 is still
alive or not.

4.6 - Ending the mission

The APC can move on the whole map now and the mission will end only if the APC has
been destroyed. The local view is variable of course and the value which has to be defined
in both Axis boxes is up to the story and what the creator of the mission wants to do.
Global view gives more flexibility to the mission. Every trigger which has been defined
with a local view generates a circle around itself. If the user is using the global view, no
circles will be visible and this gives a better overlook to the user while creating the
mission.

Covered on several units out of the global view
The same guidelines used in the global view, only with additional commands in the
conditions line:

! (alive Tank1) AND ! (alive MG1) AND ! (alive Soldier1)

The AND connects every single condition with each other. The mission will be
accomplished if the targets named Tank1, MG1, and Soldier1 have been destroyed.

The mission is finally accomplished when the trigger area is free of enemy units
One can see several units in the picture below. The objective is to eliminate all enemy
units in that village (trigger area). It doesn’t make any difference whether the enemy units
have been killed/destroyed or have run away, out of the respective trigger area.

Define the trigger as follows:

Axis a/b: 50
Type: Ende #1
Activation: EAST

Nicht vorhanden

Within ArmA© Version 1.05 its possible to adjust a trigger so that it will execute when all
enemy units have been eliminated (resp. are not present) and also one friendly unit is still
left in that trigger area. To do this, just define the side which has to conquer that area.
The definition has to be done in Activation.

102

Variable covered ending of the mission
The variable covered end is not much more difficult to realize , but up to the size more
extensively. The following example shall prove a better explanation. Three different trigger
areas have to be cleared of enemy units. The mission shall end only if all three areas, in this
example three villages, are free of the enemy. So adjust the triggers as follows:

Trigger 1 (Area 1):
Axis a/b: 100
Activation: EAST (not present)
onActivation: Target1=true

Trigger2 (Area 2):
Axis a/b: 150
Activation: EAST (not present)
onActivation: Target2=true

Trigger3 (Area 3):
Axis a/b: 100
Activation: EAST (not present)
onActivation: Target3=true

Trigger 4 (Examiner):
Axis a/b: 0
Type: End #1
Condition: Target1 AND Target2 AND Target3

As one can see, a variable (Target1, Target2, Target3) has been set to true for all three
triggers. The 4th one contains this as a condition to execute. If this trigger is executed, the
mission will be finished. One can also use the timeout function to configure a much more
flexible ending.

This command enables the user to save the current mission status while the mission is
already running. The user has the possibility to place save-points on the map which will
save the mission when the player has reached a specific location or has completed certain
mission objectives. To set place such a point on the map just use the following Syntax:

SSaavveeggaammee

If one is selecting “Try again” out of the menu once one has been killed, the player will
restart right at the point where the mission was last saved. If one doesn't want to allow
the saving of the mission, just define the command saving = 0 in the Description.ext.

103

C
h

ap
ter 4

4.7 - Saving a mission

Chapter 5
- Mission Accessories -

This chapter offers lots of additional accessories which can be helpful to the mission. It is
the most complex chapter of the whole book because it contains 85 subsections. You
may find all the answers to your questions which you’ve ever searched for, and also lots
of other nice information, which might be helpful in your mission.

5.1 Empty or locked vehicle 106
5.2 Driver/Passenger of a vehicle 106
5.3 Unit is not allowed to enter a vehicle 106
5.4 Unit in vehicle? 107
5.5 Vehicle only moves when unit has entered 107
5.6 Group already in vehicle when the mission begins 108
5.7 Let a unit get in and get out of a vehicle 108
5.8 Speed of a unit 108
5.9 Display the speed of a unit 108
5.10 Unit keeps standing 109
5.11 Getting a unit started 109
5.12 Unit is moving to its destination 110
5.13 Running patrol, drive or fly 110
5.14 Escape behaviour of a unit or a group 110
5.15 Moving units, objects, triggers and markers 111
5.16 Placing objects higher or lower 111
5.17 The height of a unit 112
5.18 Accurate helicopter landing 112
5.19 Unit is moving into a building 112
5.20 Unit is leaving / joining group 113
5.21 Assigning a target to a unit 113
5.22 Unit turns to another Unit 114
5.23 Unit is selecting weapon 114
5.24 Inflict damage or heal a unit 114
5.25 Defining a death zone 115
5.26 Checking of an area 115
5.27 Bring about a certain behaviour of a unit in an area 115
5.28 Save or load a unit status 116
5.29 Degree of familiarity of a unit 117
5.30 Friendly Enemy 117
5.31 Friendly Forces 118
5.32 The Alert 119
5.33 Dead as condition 120
5.34 Distance of two units or objects 120
5.35 Allocate a flag to a flag staff 120
5.36 Burning fire 121
5.37 Add or remove switchable units 121
5.38 Read out and display player side, - name, -type 121

104

5.39 Oppress player input 121
5.40 Force the map on the screen 121
5.41 Adjusting distance of view 122
5.42 Adjusting the weather 122
5.43 Adjusting date and time of day 123
5.44 Slow motion or time sprint 123
5.45 Generating units and objects 124
5.46 Generate flares, smoke and explosions 126
5.47 Delete units and objects 127
5.48 Adjusting radio menu 127
5.49 Allocate a call-sign to a group 128
5.50 Send a radio message 129
5.51 Creating sound 129
5.52 Using own sounds 130
5.53 Set identity 134
5.54 Mimics 135
5.55 The action command 136
5.56 The animation command 139
5.57 Disable AI units 144
5.58 SetVelocity 144
5.59 The information text 144
5.60 Units keeps lying or keeps standing 144
5.61 Using ID´s 145
5.62 Placing units inside of a building 148
5.63 Unit is moving to desired house position 153
5.64 Getting position displayed 153
5.65 The Eventhandler 155
5.66 Different text displays 157
5.67 Stringtable Basic Values 158
5.68 Create waypoints 159
5.69 Create trigger 160
5.70 Create marker 162
5.71 All about vehicles 165
5.72 Create a light source 167
5.73 Create dust 167
5.74 Create smoke 168
5.75 Create fire 169
5.76 Assigning ranks 171
5.77 Unit using Binoculars 172
5.78 Assigning a unit to a vehicle seat 172
5.79 Allocate a unit to a team 173
5.80 Unit is giving out a command 174
5.81 Has a unit recieved damage? 174
5.82 The air traffic 175
5.83 Decrease grass details 176
5.84 Place sloped objects 176
5.85 Lock or unlock missions 177
5.86 Empty searchlight with light 177

105

C
h

ap
ter 5

To place an empty vehicle on the map just press the 1-Key and double click on the
map. When the menu appears one has to select “Empty” out of the Side drop-down menu.
Then the unit and vehicle type has to be selected out of the Class sub menu. Then press
the OK button.

If the vehicle needs to be locked or isn't intended to be used, just select locked in vehicle
status. If the user wants to make the vehicle usable later, just use following syntax:

Name lock true - The vehicle becomes locked

Name lock false - The vehicle becomes unlocked

With the following orders it’s possible to "beam" a unit to an arbitrary position of a vehicle.
Those syntaxes only need to be defined in the init box of each unit or in external scripts
as well. If those syntaxes are to be defined in the init box of a unit, the variable this can
be used instead of a Name.

Name moveInDriver Fhz1 - Driver of the vehicle

Name moveInCargo Fhz1 - Passenger in a vehicle

Name moveInCommander Fhz1 - Commander of a vehicle

Name moveInGunner Fhz1 - Gunner of the vehicle

Name moveInTurret Fhz1 - Gunner of the vehicle (MG)

Name moveInTurret [Fhz1,1] - Second Gunner of the vehicle (MG)

Name moveInCargo [Fhz1,3] - Passenger on any cargo position

This syntax has to be used if the user doesn’t want to make a vehicle usable for a certain
unit. To do this just enter the following syntax into the init box of the vehicle.

[[NNaammee11,, NNaammee22,, NNaammee33]] aalllloowwGGeettIInn ffaallssee

Now the units called Name1, Name2 and Name3 are not allowed to enter the vehicle. If
the user wants to make the vehicle usable for these units again, just set the variable on
true again.

[[NNaammee11,, NNaammee22,, NNaammee33]] aalllloowwGGeettIInn ttrruuee

5.1 - Empty or locked vehicle

5.2 - Driver / Passenger of a vehicle

5.3 - Unit is not allowed to use a vehicle

106

Sometimes it might be useful to check whether a unit is still inside a vehicle or not. This
can also be used as condition to activate a trigger or a script.

To check whether Name is sitting in a vehicle just use this syntax:

Name in VehicleName

Player in (crew VehicleName)

and define it as condition of a checking trigger. If the unit is getting into the car now, this
trigger will be activated.

To use this one in a script, just define it this way:

? Name in VehicleName

To test whether a unit is no longer sitting in a vehicle just use this syntax:

not (Name in Vehiclename)

! can be used instead of NOT. The conditions are the same.

Maybe you have a vehicle on the map which already has its waypoints allocated and only
should start to move when a special unit has entered, for example the player. It doesn't
matter which kind of vehicle is used; it works for cars, trucks, ships and also helicopters.

To make it work, just enter following syntax in the condition field of a trigger, or a waypoint:

NNaammee iinn VehicleName or VVeehhiiccllee NNaammee ==== VehicleName

Using with groups
That above syntax works for groups as well. The vehicle has to wait until all units of the
group have entered the vehicle. In the following syntax the driver is included, which is
already sitting in the vehicle. One has to calculate the whole group + the driver.
To make it work just enter following syntax in the condition field:

ccoouunntt ccrreeww TTrruucckk11 >>== 1100 or ccoouunntt ccrreeww TTrruucckk11 ==== 1100

C
h

ap
ter 5

5.4 - Unit in vehicle?

5.5 - Vehicle only moves when unit has entered

107

C
h

ap
ter 5

If the user wants to create a mission where a group is already sitting in a vehicle, one has
to enter the following syntax into the init line of the group leader:

{_x moveInCargo Heli1} forEach Units Group this

or
{_x moveInCargo Heli1} forEach Units Grp1

To do this just place an empty vehicle and a soldier on the map. Then, give a waypoint to
the soldier and place it directly on the vehicle. Then select “Get in“ of the Type menu.
Place another waypoint on the map and select “Get out“. The unit will get into the car,
move to its destination and will get out.

One has the possibility, of course, to do this by using a syntax as well:

unAssignVehicle Vehicle1 - Unit is leaving vehicle

{unAssignVehicle _x} forEach units Group1 - Units are leaving vehicle

The group leader is giving out the command to his group to get out of the vehicle.

The speed of a unit can be defined in a waypoint in the speed menu or you can also use
the following syntax:

Name setSpeedMode "Full" - Available in Auto, Limited, Normal, Full

Name forceSpeed 120 - Value in km/h (imp. Not Miles/h)

Name limitSpeed 60 - Value in km/h

Name1 setSpeed getSpeed Name2 - Name1 receives Speed from Name2

It’s always possible to get the speed of a unit displayed as a hint. One could use this
information for further things like conditions i.e. To do this use following Syntax.

hint format ["Speed: %1" , speed Name]

? speed Name > 30 : hint " You are driving to fast!"

108

5.9 - Display the speed of a unit

5.6 - Group is already in vehicle when the mission begins

5.7 - Let a unit get in and out of a vehicle

5.8 - Speed of a unit

The command dostop this in the init line of a unit, will keep a unit in its position where
it has been placed. This enables one to avoid the units moving back into the formation
close to their leader after the mission has been started.

Using with a team
This option is quite useful if the player is a leader of a group and doesn’t want his group
following him when he is changing his position. So it is possible to allocate special
positions to the units. The units will keep their positions if the dostop this command has
been defined in the init line of each unit. Furthermore, it's important to set the option
"None" in "Special" for the respective unit..

Using with enemy units
This order is very useful, because it is possible now to spread out enemy units on the
terrain. It is quite important to make sure that the option "none" in "special" has been set.
If the enemy gets attacked now, they will cover on their positions.

In this example we have a group which has to move to it is predefined position if a trigger
or waypoint is executed by the player. Enter the following command in the init line of the
group leader.

this stop true

To make it work you also have to enter

Name stop false

in the init line of the player character. The group will now move to its waypoint. The
command “this” has been used in the syntax above, because this command has been
defined in the init line of the group leader. The second command is using a name, so it's
necessary to allocate a name to the group leader.

109

C
h

ap
ter 5

5.10 - Unit keeps standing

5.11 - Getting a unit started

In ArmA©, it’s also possible to send a unit to a special place on the map without supporting
them with waypoints beforehand. There are several possibilities available:

Using objects : Name doMove getPos Name

Using ID´s : Name doMove getPos (Object ID)

Using coordinates: Name doMove [X,Y,Z]

Using markers : Name doMove getMarkerPos "MarkerName"

If one wants to make a whole group move to a special position which has been defined
with one of the possibilities shown above, you first have to define that order without the
do of doMove. That’s needed because the leader might move alone to its predefined
position and his group would follow only when he has reached his destination.

An example for a syntax which is used for objects:

Name move getPos Name or Leader Name move getPos Name

There are further interesting examples shown in the Chapter 6.6 - The Map Click and
Chapter 6.2 - The GPS-System.

If the user wants to make a patrol, running or driving around a base in an unending-loop,
place a unit on the map and give it several waypoints. The last waypoint has to be placed
directly into the area of the first one, then select Cycle out of the Type drop-down menu.

Maybe the user wants to edit a mission where the enemy units are escaping when a
predefined value has been reached. The enemy units will run away and hide somewhere
on Sahrani, but be careful, sometimes they reform and attack again from another
direction.

All values between 0 and 1 can be used, so even the decimal values will work. The value
0 means no and 1 means maximum escaping behaviour. If the Syntax has to be written
in the init line of a squad leader:

this allowFleeing 0.8

The command will effect the whole group. It´s much more dynamic if this Syntax is used
with the random function.

this allowFleeing (random 0.8)

110

5.12 - Unit is moving to its destination

5.13 - Running patrol, drive or fly

5.14 - Escape behaviour of a unit or a group

It’s possible to move units, objects, triggers and markers while a mission is running. We
can say as well, that those parameters will get beamed to another position on the map.
To do this, it’s recommended that the object which has to get moved has a name, then it’s
possible to move objects by using following syntaxes:

Using an object: Name setPos getPos Name

In front, behind, besides an Object Name2 setpos Name1 modelToWorld [0,3,0]

Using an ID: Name setPos getPos (Object ID)

Using coordinates: Name setPos [X,Y,Z]

Using markers: Name setPos getMarkerPos "Marker1"

From marker to marker: "M1" setMarkerPos getMarkerPos "M2"

From marker to object: "Marker1" setMarkerPos getPos Name

Using a vehicle: Name setPos getPos vehicle Player

Using a vehicle II: "Marker1" setMarkerPos getPos vehicle Player

A related order which contains the definition of the altitude of an object, in this case is the value 10.

Name1 setPos [(getPos Name2 select 0),(getPos Name2 select 1),10]

Name1 will be moved to the position of Name2 with a height of 10 meters. If one wants
to move a whole group from one position to another one, so use the Syntax below:

{_x setpos getPos Name} foreach units Group1

The following Syntax enables one to move a unit or an Object to a random position. The
Syntax consists out of the values of the XYZ – coordinates and the marker positions. The
Engine will recalculate the random position by using this information.

Name setVehiclePosition [[1000,2000], ["Marker1", "Marker2", "Marker3"], 0]

Nearly all objects which were placed on the map can be set higher or lower. Units and
vehicle are not fully supported, so it’s not possible to move them down into the terrain,
but one can set them higher if it's needed. It’s possible to place soldiers in houses or roofs.
If a unit gets set on the map a few meters over the ground, that unit will fall to the ground
if there’s no house or other item below it. That’s because of the gravity-conditional, which
is simulated very well in ArmA©. The only exception to this are static objects. Static objects,
like sandbags, are not subject to the gravity, and would float at the adjusted height. To lift
up or lower an object on the map use following syntax:

this setPos [(getPos this select 0),(getPos this select 1),10];

The object where this syntax has been defined would be displayed now at a height of 10
meters. ArmA© doesn’t support this function until version 1.8!

111

C
h

ap
ter 5

5.15 - Moving units, objects, triggers and markers

5.16 - Placing objects higher or lower

The contents of the Array [] have to be defined as follows. The first () contain the position
of the object in X-direction. The second () contain the Y-direction and the numbers
behind the () are similar to the Z-direction of the object. If one wants to move Name1
to Name2 than both of the this have to be replaced with their respective names. Maybe
a marker shall move to another position after a target has been destroyed.

Use the following syntax:

Name1 setPos [(getPos Name2 select 0),(getPos Name2 select 1),10];

Name1 has now been moved to the position of Name2, at a height of 10 meters.

Along with the setPos and getPos orders, setPosASL and getPosASL are also available
which are used to define the height of an object over the sea level.

It's possible to define several levels of height for a flying unit. One can do this by using the
waypoints of the respective unit or even through the use of scripts. The following syntax
has to be used:

Name flyInHeight 120

If one places a waypoint on the map on the position where the helicopter needs to land,
the helicopter will land as close as possible to the waypoint's position. But there's a
solution to make a helicopter land precisely at a predefined point on the map. First one
has to place a Heli-H on the spot which the helicopter is to land. It doesn't really make any
difference whether that H is visible or invisible. The waypoint has to be placed directly on
the H, and unload or get out, is to be selected out of the type transport drop-down menu.
The helicopter will land now at this exact position. A further possibility is given by using
the syntax below:

HeliName land "PositionName"

To make a unit move into a building, it's necessary to know whether the building allows
units to enter or not. To do this just move the cross-hair over a building a wait until the
description of the building to appear. If that building is able to be entered by a unit, give
the unit a waypoint directly on the building. Now, one can select one of several positions
inside the building which are selectable out of the House option from the waypoint
menu. The unit will move into the predefined position after the respective waypoint has
been executed.

5.17 - The height of a unit

5.18 - Accurate helicopter landing

5.19 - Unit is moving into a building

112

It’s possible to make a unit leave or join his / another group. To do this just use a waypoint
and go back to Chapter 1.5 - Adding Waypoints, and take a look in the subsection, join
and lead. The other method for a unit to join or leave a group is to use a script. To make
a unit leave his group just use following syntax:

[Name1] join grpNull

by using the following syntax one can make a unit join another group:

[Name1] join Name2

At first, Name1 was allocated to a non existing group and then to group Name2. For
use with several units use following syntax:

[Name1, Name2, Name3] join grpNull

and then:

[Name1, Name2, Name3] join Name4

It’s also possible to make an enemy unit join a friendly group, for example, if a Russian
unit needs to fight on the American side against his own troops.

Here, one can define several target possibilities for units. Whether a units designated
target is friendly or enemy makes no difference. The syntaxes which has to be used are as
follows:

Name1 ddooTTaarrggeett Name2 Name1 turns to Name2

Name1 ccoommmmaannddTTaarrggeett Name2 Name1 orders an unit to aim on Name2

Shooting

Name1 doFire Name2 Name1 is shooting on Name2

Name1 doFire ObjNull Name1 is no longer shooting any target

Name1 fire "Weapontype“ Name1 is shooting blind

Name1 commandFire Name2 Name1 is ordering a unit to shoot at
Name2

C
h

ap
ter 5

5.20 - Unit is leaving / joining group

5.21 - Assigning a target to a unit

113

If one wants to make a unit look in a special direction or to another unit, just use following
syntax. But there are also more possibilities available. Using the first option, the unit turns
with its whole body to the respective direction while the other option enables the unit to
beam into the desired direction.

Name1 setDir 160 - Name will be moved into direction of 160
Name1 setFormDir 160 - Name turns to direction 160
Name1 setDir getDir Name2 - Name gets Azimuth of Name2
Name1 doWatch Name2 - Name1 is looking to Name2
Name1 lookAt Name2 - Name1 is looking to Name2
Name1 glaceAt Name2 - Watching Name2 shortly (moves the head only)

Title screen:

titleText [format["Direction of view: %1", getDir Name1], "plain down"]

By using the following syntax it’s possible to make a unit select his second weapon. It’s
quite necessary to make sure that the weapon class name has been written the correct
way and the unit does have the required weapon in its inventory.

Name selectWeapon "Stinger"

It’s possible to allocate damage to a unit in the form of a value. It’s also possible to allocate
a predefined damage value from one unit to another. To make it work, values are needed
which will give the defined strength of damage to the respective unit. 0 means no
damage and 1 means absolute damage...dead. The decimal numbers between 0 and 1
define the intermediate values. Please make sure that the syntax setDamage can be
written with one or two m. While getDammage will work only by using two m.

A damage value gets allocated to Name1:

Name1 setDamage 1 or Name1 setDammage 1
Name1 setVehicleArmor 0.5

Name1 receives the damage value of Name2:
Name1 setDamage getDammage Name2

If the user wants to use the damage value as a condition, the following syntax is needed:
? damage Name1 >= 0.5 or ? getDammage Name1 >= 0.5

To destroy objects which are located around another object, these ones need to be
defined in a Variable (Area1). Then all these Objects will be destroyed by using the
following Syntax:

Area1 = nearestObjects [Object1,[],300] - Will list Objects around Object1
{_x setDamage 1} foreach Area1 - Destroy (i.e. Radio Alpha)

114

5.22 - Unit turns to another unit

5.23 - Unit is selecting weapon

5.24 - Inflict damage or heal a unit

One might have several reasons for setting up a death zone. If the user wants to create a
scene where many dead bodies are lying all over the ground or a scene where none of the
conflicted forces are to enter a specified area, a death zone is useful. Just enter following
Syntax into the init box of the trigger, and make sure that the dimensions are defined to
the trigger.

{_x setDamage 1} foreach thisList

It’s only necessary to define the side which shall execute the trigger. If the trigger is to be
executed only one time or several times, just define this by using Repeatedly.

It is possible to display the units which are located in a predefined trigger area. It’s also
possible to display the unit(s) of one or all forces by defining the respective trigger. To do
this there are two triggers needed which have to be defined as follows.

The first one is the checking trigger. Set Axis a/b with the size of the area which has to
be checked. Select the respective forces which are to be displayed by executing the
trigger and rename the trigger to Area1.

The second trigger is the radio trigger which displays the radio device later in the game.
Set it up with Axis a/b both set to 0, and select repeatedly, then enter the following syntax
in the onActivation field:

hint format ["%1",list Area1] or hint format ["%1", WEST countSide Area1]

If one is using the radio now, so all units which are located in Area1 will be marked. One
has now the further possibility to combine several areas with each other. I.e. if a second
area has been created which is called Area2. So these both areas can be combined with
each other and the results of both areas can be used as condition for further things.

hint format ["%1", (WEST countSide list Area1)+(WEST countside list Area2)]

It is possible to bring out a certain behaviour of a unit by using the following syntax. As
already explained in Chapter 5.26 it’s possible to define this option for every side
individually or even for all forces. To do this just define the area where the units are to
receive the specified order by adding a trigger and renaming it the way you want to. Then,
enter the syntax in the onActivation field of a trigger, waypoint or even a script:

{_x setBehaviour "Stealth"} forEach list Area1

All units would take cover now, for example. But the order setBehaviour "Stealth" is only
one of many possibilities.

115

C
h

ap
ter 5

5.25 - Defining a death zone

5.26 - To check an area

5.27 - Bring about a certain behaviour of a unit in an area

This command is great to use in campaigns when the player or even the other units have
to carry over their last save status to the next mission.

If one wants to use this command in his campaign, one has to take care that the unit is
still alive when the mission has ended. That’s important if the status has to be used again
later.

It’s possible to save the status of a unit by using the order saveStatus, as this order name
already explains itself. But this command only works while used in a Campaign, because
the respective value will be saved in the Objects.sav of the campaign. So it won´t work
in multi- or singleplayer missions.

Savestatus
Status1 is variable and can be renamed as you want. The status of Name1 will be saved
now with the variable Status1 by using following syntax:

xy=Name1 saveStatus "Status1"

That status now contains several pieces of information about the unit:

- The identity
- The health status
- The weapon status
- The ammunition status

If one wants to give that saved status to another unit, just use the example which is
explained in the following section.

LoadStatus

xy=Name2 loadStatus "Status1"

The unit will now receive the saved status of Name1. That means that Name2 looks like
Name1, so it’s also equipped with the same weapons, the same ammunition and has the
same health status. Now one can say that Name2 is a clone of Name1.

DeleteStatus
It's also possible to delete each status. Just use following Syntax:

deleteStatus "Status1"

5.28 - Save or load a unit status

116

This syntax can be used for several useful things. So it’s possible, for example, to give a unit
some information about another unit or using the degree of familiarity as condition for
a further executing action. All values from 0 to 4 have to be used here again.

0 Name1 has no knowledge of Name2
1 Name1 has only some knowledge of Name2
2 Name1 has enough knowledge of Name2
3 Name1 has full knowledge of Name2

If one wants to give knowledge of unit to another, one has to use the following Syntax:

Name1 reveal Name2

Name1 now has knowledge of Name2

If one wants to use the knowledge as a condition to execute a trigger, one has to enter
the following Syntax into the OnActivation field.

Name1 knowsAbout Name2 > 1

The trigger will execute and run its actions when Name1 has more knowledge of Name2
than value 1.

The knowledge becomes less over time, so that the value will get back to 0. The syntax
above can be used the other way as well, one only needs to change the > to < .

Name1 knowsAbout Name2 < 0.8

That’s quite useful when the unit always has to stay near to the other units. The trigger will
execute if the unit is moving away from its group or gets killed, then the value gets set
back, as defined above, to 0.8 and the trigger will execute.

This value can be further displayed as text message. To do this use following Syntax:

hint format ["Degree of familiarity: %1", Name1 knowsAbout Player]

If the following Syntax is used for a unit, the unit will no longer get shot or be recognized
by the enemy. This gives the user the possibility to simulate a prisoner of war in the
mission, who would not get shot immediately as he would if he was not a captive.

this setCaptive true or Name setCaptive true

If one wants to reset this, the order true just has to be changed again to false.

C
h

ap
ter 5

5.29 - Degree of familiarity of a unit

5.30 - Friendly enemy

117

In ArmA©, the user has the possibility to make the normally hostile forces fight together
against each other, so it’s possible to make west and east friendly to each other and let
them fight against the rest. Furthermore, one can make the civilians become enemy, so
that the military forces have to fight against them as well. This function gives the user a
huge leeway because this option can be defined with a random value. No one will ever
know what will happen when. The friendly side can become enemy the next day again.
It adds a dynamic to the mission and promises lots of fun and helps keep the game from
becoming boring. The following forces are freely definable:

West - East - Guerrila - Civilian - Enemy - Logic

It’s also possible to make one side become friendly to the other one while the other one
is still enemy. This means that the enemy side would open fire immediately if the other
side becomes “known”, but the other side wouldn’t shoot back.

The value, which defines the SetFriend function, moves between 0 and 1. All values above
0.6 means friendly and all values below 0.6 means enemy. Some Syntax examples:

WEST setFriend [EAST,1]

Now WEST would be friendly to EAST but not the other way. To do this, one needs a 2nd
syntax like the following:

WEST setFriend [EAST,0.7]; EAST setFriend [WEST,0.7]

Now both sides are friendly to each other, but it may be that one or both of them will
become enemy to the other again. One doesn’t know if or when that’ll happen, so it adds
a lot of dynamics to the mission. If the values get set down, both sides will be enemy to
each other again.

WEST setFriend [EAST,0]; EAST setFriend [WEST,0]

Random
Of course, everything is possible per the random command. That’s one of the biggest
advantages of this game, one can define everything using that command, that way, no
one knows whether the other side is enemy or friendly against ones self. To do this just
use following Syntax:

GUER setFriend [EAST,(random 0.9)]

Random was defined here as well which determines a coincidence-value for 0.9 by it self.
This can get released with 0.9 (friendly) but also with 0.3 (enemy). No one will know what
happens next.

Using in deathmatch
That function is further explained in Chapter 7.6. It’s possible to make a single side enemy
to itself

EAST setFriend [EAST,0]

5.31 - Friendly Forces

118

By using the syntaxes which are explained in Chapter 5.27, it’s possible to realize several
types of alerts. It’s up to the mission’s history whether and how an alert will be caused.
Here one can find some examples of the possibilities to use the alerts.

Example 1 - Causing an alert while detecting within a trigger area
To do this, just place a trigger with following settings onto the map.

Activation BLUFOR
Detected by EAST

Effects Alarm

If a West is detected by an East within the defined trigger area, the trigger will be executed
and the alert will be caused.

Example 2 - Causing an alert if a unit is detected
The alert shall be executed if a unit is detected.

Activation Connect the trigger with the unit or the player character
Detected by EAST

Effects Alarm

Example 3 - Causing an alert if a unit or an object is no longer present (killed/destroyed)

Activation Connect the trigger with the unit or the object
Not present

Effects Alarm

Example 4 – Alarm triggered if the group named Grp1 is smaller than a predefined value

Activation None
Axis a/b 0
Condition Count Units Grp1 < Value
Effects Alarm

Additional information
It’s possible to run nearly all objects by using a syntax in the onActivation line of the
trigger. For example, to let all units which are located in the alert area named Area1
receive knowledge about the unit or the player character, just use following Syntax:

{_x reveal Player} foreach list Area1

C
h

ap
ter 5

5.32 - The Alert

119

To check whether a unit is still alive, one needs a trigger with following settings. Of course
there are several variants available as well. One can see an example of a method often
used.

Activation None
Axis a/b 0
Condition ! (alive Name) or not alive Name

The trigger is now checking globally by (by using Axis 0/0) whether Name is still alive and
would execute its effects at Activation if Name gets killed.

Sometimes it might be needed that the distance of two units or objects has to be used
as condition to run a script or execute a trigger. To do this just use following syntax:

Player distance Jeep1<= 50 or Player distance Jeep1 == 50

Local variable value allocated: _distance = Player distance Jeep1

Later in the Text:

titleText [format["%1 Meters", Player distance Jeep1], "plain down"]

It's possible in ArmA© to define all flagstaffs in the game with individual flags. The flags can
be created by yourself or just use one of the flag packs which can be downloaded from
the Fan-sites. To make the flag visible in the mission, just copy the image file into the
missions folder and enter the respective link into the init field of the flagstaff in the game.
Here, you can see an example of such a syntax:

this setflagtexture "Name.paa"

The file formats PAC, PAA and JPG are possible using pixel dimensions of 512 x 256.
The following flags can be used in the game by using this path:

this setFlagTexture "\ca\misc\data\usa_vlajka.paa"

USA Sovjet union Racs
usa_vlajka_co.paa rus_vlajka_co.pac jih_vlajka.paa

Russia SLA
rus_vlajka_co.paa sever_vlajka.paa

120

5.33 - Tod als Bedingung5.33 - Dead as condition

5.34 - Distance of two units or objects

5.35 - Allocate a flag to a flagstaff

C
h

ap
ter 5

If one wants to extinguish a fire or light it up later in the mission, the fire needs to be
named and that name used in the following syntax:

this inFlame true or Name inFlame false

By using the following syntax it’s possible to allocate or to remove switchable units while
a mission is running. A unit will be playable by using this Syntax:

addSwitchableUnit Name - To make the unit playable
removeSwitchableUnit Name - To make the unit unplayable

If one wants to switch to another player, just use this Syntax:
selectPlayer Name or group Name selectLeader Name

The ordinary command Teamswitch displays the Teamswitch menue.

To read out the side of a unit in a multiplayer area, use following syntax:

? Side Player == West
Name Player == "Mr-Murray"

Later in the Text:
titleText [format["%1 -Soldier", side Player],"plain down"]

titleText [format["Hey %1", name Player],"plain down"]
titleText [format["Typ: %1", typeOf Player],"plain down"]

Sometimes it might be useful to oppress the input of the player. Certain situations, like
sequences or map animations, shall only give some additional information to the player,
so it’s quite important to make sure that the players input is no longer disabled than strictly
necessary. Otherwise the game may become boring to the player or the player starts to
get frustrated and exits the game. To activate this function, just use the disableUserInput
syntax. One only has to switch it to true, or false if one wants to delete it again.

disableUserInput true

Its possible to force the map on the screen while the game is running. There’s no input of the
default key (m) needed. This function is quite necessary while creating animations or sequences
which shall give some further tactical information to the player. Its also possible to simulate many
different things, like troops movements and more.

forceMap true
Now it would be possible to make markers moveable on the map for example. So it's
necessary to oppress the player input while the animation is running.

121

5.36 - Burning fire

5.38 - Read out and display player side, - name, -type

5.39 - Oppress player input

5.40 - Force the map on the screen

5.37 - Add or remove switchable units

Sometimes it might be useful to set the distance of view higher or even lower. For
example, one may want to create a sequence up to a mountain where a good view is
needed. So it’s possible in the game to change the distance of view, even if only for a
short time. It’s also possible to reduce the view of distance again later. This saves
performance on the players PC. The view of distance is adjustable from 500 up to 10,000.
Just use following syntax:

setViewDistance 500

The weather is predefined in the editor, so one can select a kind of weather which will be
active all the time the mission is running. But if one wants to make the mission more
interesting because the weather is changing from time to time, one would need a special
syntax to make it possible. That syntax makes the weather random, so one can´t say which
kind of weather will be next. The syntax contains some values again. These values are
moving between 0 and 1. This, interconnected with random-time and random-fog
provides a more dynamic mission.

120 setOvercast 0.8

The first value (120) displays the time in seconds which is needed before the weather will
change again. The second value (0.8) displays the kind of weather. 0 means that there
are no clouds in the sky and the sun is shining. Every decimal number adds more clouds
and even rain to the sky. Within a value of 0.5, the whole sky is full of clouds and within
the value of 1, heavy thunderstorms are possible.

Random weather:
Its possible to decide this with a syntax which determines the weather-value per chance.
If that syntax starts right when the mission begins, the weather will be different every
time the mission begins. To do this just use following syntax:

0 setOvercast (Random 0.8)

Rain:
It's also possible to adjust the rain without the SetOvercast command.

0 setRain 0.8

10 setRain (Random 0.8)
Fog:
The syntax to use the same function for fog is similar to the one used for weather or rain.
Only the syntax order is different:

10 setFog 0.6

60 setFog (Random 0.8)

5.41 - Adjusting distance of view

5.42 - Adjusting the weather

122

The date and time of day are possible to adjust while the mission is running. One can
change these by using fixed values or even with random values.

Year, month, day, hour, minute of day:
By using following syntax one can change the year, the day and the time of day as well.
This syntax has to be defined in following sequence.

setDate [2006, 11, 30, 9, 0]

The 2006-11-30 at 09:00 (am) has been defined here. Remember that the game engine
has been written with European standard and so you have to select/enter 21:00 if you’d
like to use 09:00 pm. It’s possible of course to generate some options with random values.
You can see an example right here:

setDate [2006, 11, 30, (ceil random 8), (random 60)]

Time:
Its further possible to define the time of day individually:

SkipTime 1 This value skips the time by 1 hour
SkipTime –1 This value skips the time 1 hour backwards

By using the following syntax it’s possible to slow the speed of the game down or even
up. Especially while creating sequences, it’s possible to make quite nice slow motion
effects. It’s also possible to enable a bullet mode as explained in Chapter 6.10. That isn’t
quite realistic but gives a nice experience to the user later in the game.

Slow motion:
All values which are set below 1 define the slow motion area. But the most effects can be
reached by using the decimal values. The smaller the value the more slow the effect.

SetAccTime 1.0 - Normale Zeit

SetAccTime 0.0500 - Zeitlupe

Time sprint:
As the speed can get slowed down, It can be sped up as well. But that isn’t quite useful.
But if one wants to do it anyway, all values from 1 up to 8 can be used. This ones gives
some more speed to the player character and the AI characters foot.

C
h

ap
ter 5

5.43 - Adjusting date and time of day

5.44 - Slow motion or time sprint

123

It’s possible to generate units, whole groups and objects while a mission is running.
Furthermore, they can get deleted again when they are no longer needed. This offers lots of
saved performance to the users PC because the objects will be generated right when they
are needed. There are some possible variants available. Here you can get some examples.

Using with objects:
In the following example a D30 gun will be generated at Position XYZ:

Ari1="D30" createVehicle [x,y,z]

By using the setDir command, it’s looking like this:

Ari1 setDir 190

It might so happen that a vehicle can’t be used after it has been generated. To avoid this,
the following order should be used as well:

Ari1 lock false

So it’s possible now to use this vehicle. If one wants to generate a(n) unit/object at the
position of another unit/marker/game logic, just use this syntax:

Bomb="SH_120_HE" createVehicle position Player
Bomb="SH_120_HE" createVehicle getMarkerPos "Marker1"

By using the following syntax, a bomb will be created directly over unit S1 at a height of 50 meters.

Bomb=“SH_120_HE” createVehicle [(getPos S1 select 0),(getPos S1 select 1),50]

Used with units:
Unfortunately, one can not prevent that the syntax line will be very long to generate a
unit. In this example, a sniper (WEST) named Name1 will be generated right on the
position of his leader (S1/Player). But make sure the leader has been placed on the map
first. One can replace the unit (leader) with a game logic as well. The generated soldier has
a skill value of 0.4 and his rank is Corporal.

"SoldierESniper" createUnit [position player, S1, "Name1=this",0.4,"Corporal"]

It’s also possible to define it another way, so the position would get defined by a marker
which has to be placed at the position of the leader. That markers properties have to be:
Axis (a/b) 0, so that marker is not visible.

"SoldierESniper" createUnit [getMarkerPos "Marker1",EGrp1,0.8,"Corporal"]

This unit hasn't been allocated a name because a name is only needed if one wants to use
this unit later in the mission. The leader, in this case, was named EGrp1.

Here is an example with adding a weapon:

"SoldierWSniper" createUnit
[position Player, Player, "this addweapon ""binocular"" ", 0.8, "Corporal"]

124

5.45 - Generating units and objects

C
h

ap
ter 5

Using with groups:
Furthermore it’s possible to generate whole groups instead of single units. These units
can be renamed individually if one wants to define special things to them later. The
following script is used as an example only. In this script a group will be generated at the
position of the marker "GrpOneM". That marker has already been placed on the map.

As one can see, the first unit gets renamed as leader and he also is allocated a higher rank.
This unit will be the leader of the group. The name of the whole group is "GrpOne" as
well. To make sure that this group works correctly, read the following paragraph carefully.

Notice:
If soldiers of one side are to be generate while the mission is already running and no unit
of the respective side has already been placed, it’s important to allocate a center to this
side to make sure that these units can communicate with each other. Then the setFriend
order has to be used and the both sides needs to become enemy's to each other.
Otherwise the AI wouldn’t start shooting the enemy side. It’s necessary to define the
setFriend order and the center within the init.sqs script. If one has already placed units
from all parties on the map, then these centers will be generated by the engine
automatically. In the following example you can get the entries for the example Init.sqs:

Init.sqs

Center
As how Center can be created, it can be deleted again by using deleteCenter SIDE. But that
would be unnecessary.

125

Grp1 = Creategroup EAST;

_Leader="SquadLeaderE" createUnit [getMarkerPos "GrpM", Grp1, "Grp1=this", 1, "Sergeant "];
_Unit2="SoldierEB" createUnit [getMarkerPos "GrpM", Grp1, "", 1, "Corporal"];
_Unit3="SoldierEB" createUnit [getMarkerPos "GrpM", Grp1, "", 1, "Corporal"];
_Unit4="SoldierEG" createUnit [getMarkerPos "GrpM", Grp1, "", 1, "Corporal"];
_Unit5="SoldierEMG" createUnit [getMarkerPos "GrpM", Grp1, "", 1, "Corporal"];
_Unit6="SoldierEAT" createUnit [getMarkerPos "GrpM", Grp1, "", 1, "Corporal"];
_Unit7="SoldierESniper" createUnit [getMarkerPos "GrpM", Grp1, "", 1, "Corporal"];
exit

Createcenter EAST
Createcenter WEST

WEST setFriend [EAST,0]
EAST setFriend [WEST,0]

To generate a flare or a smoke shell over an object or another XYZ Position, one can
actually use the same order which is already explained in Chapter 5.45. The only different
things are the class names, because these are not similar to the magazine names. You can
get the necessary one here:

Flare1="F_40mm_Green" createVehicle [x,y,z]

If you´d like to generate something like this over or near to the XYZ Position:

Smoke1="Smokeshell"
createVehicle [(getPos Name1 select 0),(getPos Name1 select 1), 10]

Make sure that these two options are written in one line (but this not really possible on
this page of the guide). One can also use a short one:

Smoke1="Smokeshell" createVehicle position Name

Notice!
Flares have to be generated within a level of 100 metres. Flares, and even smoke- gun
grenades can be selected:

F_40mm_White F_40mm_Red

F_40mm_Green F_40mm_Yellow

Smokeshell SmokeshellRed

SmokeshellGreen B_40mm_HE

One can generate other effects as well. For example an SH_125_HE or something similar
to generate explosions. So please take a look into Chapter 3.10. Several explosive devices
are listed there.

Here you can take a look at some example previews.

5.46 - Generate flares, smoke and explosions

126

While only one syntax is needed to delete objects, there are several different syntaxes
needed to delete units. If one wants to delete only the gunner of a Blackhawk - which
hasn’t been renamed - the syntax example will look like the ones below:

deleteVehicle Name - deletes the vehicle with that name

If one wants to delete the gunner of a helicopter, this unit needs to leave the chopper
first. Before this happens, a name needs to be allocated to him. To do this just define the
following syntax into the init line of the chopper:

Name=(Gunner Heli1)

Now, one can let him get out of the helicopter. It's also possible to write Gunner Heli1.

Name action ["Eject", Heli1] or just doGetOut Name

The name is important when it's time to delete the gunner. (Gunner Heli1) wouldn’t work.

deleteVehicle Name

One can do all this to the Commander, the Driver (Pilot) or the whole Crew.

Delete units in a predefined area
To do this just create a trigger in an arbitrary size and rename it as you want (in this
example: Zone1). Then select the side which has to be deleted or adjust it with the
respective side or the option “Anybody”. The syntax to delete:

{deleteVehicle _x} forEach list Zone1

By using the syntax below it's possible to rename the radio menu while the mission is
running. These menu options are numbered from 1 up to 10.

1=Alpha, 2=Bravo, 3=Charlie, ...

Its possible to rename this by using following Syntax:

1 setRadioMsg "Alpha-Team"

The first entry of radio Alpha has been renamed to Alpha Team. If
one wants to get an empty radio name, just set an empty space
between the two quotes.

The radio option does still exist but it's no longer visible for the
player and he’ll think that its not available. Because instead of text,
nothing more would be visible.

That option can be used as a condition if a whole team was killed.

C
h

ap
ter 5

5.47 - Delete units and objects

5.48 - Adjusting radio menu

127

It is possible to allocate different call-signs for several groups. So it is possible to
distinguish each group from each other, if someone has spoken or even sent a side-chat.
In Armed Assault® it's possible now to allocate names for each group individually. That
option was not possible in Operation Flashpoint®. Furthermore it is possible now to define
colors to each group. Here you can see some syntax examples.

Default:

Name setGroupid ["Alpha","GroupColor0"]

Free Text:

Name setGroupid ["Assault-Team-Alpha","GroupColor2"]

One can use following values:

Group names:

Group colors:

Note:
It may be that the color will not be visible, but this issue has been known since Operation
Flashpoint®. One can avoid this by writing both things in one line. The color needs to be
defined manually and the last part of the syntax, - where the color has to be defined
normaly - free. In the following example, the team was named Assault-Team-Alpha and
was assigned a red color.

Name setGroupid ["Assault-Team-Alpha - Red", ""]

"Alpha"
"Bravo"

"Charlie"
"Delta"
"Echo"

"Foxtrot"

"Golf"
"Hotel"
"Kilo"

"Yankee"
"Zulu"

"Buffalo"

"Convoy"
"Guardian"

"November"
"Two"

"Three"

0 – No Color
1 – Black
2 – Red
3 – Green

4 – Blue
5 – Yellow
6 – Orange
7 – Pink

5.49 - Allocate a call-sign to a group

128

There are several possibilities available to send a radio message. The message can be
displayed globally, side, group or even only to the units in a single vehicle. In the table
below are some examples:

Name sideChat "Test 1-2" Name talks to his side
Name groupChat "Test 1-2" Name talks to his group only
Name globalChat "Test 1-2" Name talks to all parties
Name vehicleChat "Test 1-2" Name talks to passengers inside a vehicle

If one wants to send a message from the headquarters, use following syntax:

[Side,"HQ"] sideChat "Move to your position and wait for further orders!"

The command enableRadio false is fading the radio text samples out and becomes them
invisible.

With the release of Armed Assault®, a new function has been enabled which wasn´t
available in Operation Flashpoint®. The user now has the possibility to define a sound
right at the position he wants. In the following example, a sound named Littledog has
been placed right on the position of the player.

Dog1=createSoundSource ["LittleDog",position Player,[],10]

The value 10 defines the range from the source of the sound to the player. By using this
syntax, this script has been renamed and became moveable. So one can replace it now
on any place on the map. The required syntax is:

Dog1 setPos getPos Name

So it's possible now to generate the sounds without placing anything on the map. The
sounds can be found under empty/sounds or in a trigger or waypoint under the
subsection “effects”. There are some more sounds available:

Stream, Alarm, BadDog, BirdSinging, Chicken, Cock, Cow, Crow, Crickets1,
Crickets2, Crickets3, Crickets4, Dog, Frog, Frogs, LittleDog, Music, Owl, Wolf

If one wants to create his own sound, it has to be defined in the description.ext first. This
sound can be used by typing the respective name into the syntax. This name should be
the one which has been defined in the description.ext before.

MySound=createSoundSource ["SoundName",position Player,[],10]

C
h

ap
ter 5

5.50 - Send a radio message

5.51 - Creating sound

129

130

If one wants to use his own music in a mission, the files have to be defined in the
description.ext first. The description.ext has already been explained in Chapter 2.3. One
can find the explicit explanation of this theme here.

First you have to create the folder "sounds" in the missions folder. One can also create
another folder named "music". Make sure that those names were written small. Then copy
all the desired music files into the respective folder. The description.ext offers different sub
areas, so that these files are controllable individually. This is quite necessary, because if a
player is fading down the music, the radio sound wouldn’t get faded down as well. The
following example shows the way to define the description.ext to make it work as one
wants.

Description.ext

Continued on next page.

// === Music ==>
class CfgMusic
{

tracks[]= { Track1,Track2 };

class Track1
{

name = "Track1";
sound[] = {\music\track1.ogg, db+0, 1.0};

};

class Track2
{

name = "Track2";
sound[] = {\musik\track2.ogg, db+0, 1.0};

};
};

// === Sounds ===>
class CfgSounds
{

sounds[]= { Artillerie };
class Artillerie
{

name = " Artillerie ";
sound[] = {\sounds\ artillerie.ogg, db+0, 1.0};

};
};

5.52 - Using own sounds

C
h

ap
ter 5

131

As one can see in the example above, two additional areas for radio and the surround-
sound classes have been defined as well.

- Class CFG music

- Track list

- Class Track1

- Name Track1
- Source,

db = Loudness,
1.0 = Speed of the sound

- Hints to the sounds

By using the syntax db, it’s possible to define the loudness of the sound. It’s possible to
adjust the sounds here which are too loud or too silent.

The speed option 1.0 defines the speed which is used while the sound will be played. So
it’s possible to make some speech samples higher or deeper by playing them slower or
faster. But don’t adjust it too high or your character will sound like M. Mouse.

// === Radio/Funk ==>
class CfgRadio
{

sounds[] = {Funk1};

class Funk1
{

name = "Funk1";
sound[] = {"sound\funk1.ogg", db+5, 1.0};
title = “Das ist ein Funkspruck!;

};
};
// === Environment ==>

class CfgSFX
{

sounds[] = {};
};

class CfgEnvSounds
{

sounds[] = {};
};

class CfgMusic
{

tracks[]= { Track1,Track2 };

class Track1
{
name = "Track1";
sound[] = {\music\track1.ogg, db+0, 1.0};

titles[] = { }; };
};

If one wants to play a sound in the editor, the respective sound has to be selected out of
the effects sub area of a waypoint or a trigger. To make it work one has to save the mission
first. Then the mission needs to be loaded again. Now ArmA© can read out of the new
description.ext. You also have the possibility to run those sounds by using a syntax.

playMusic "Track1"
playMusic ["Track1", 30] (Plays Track1 from Second 30)

playSound "Artillerie"
Name say "Soundname"

As already explained, all these sounds can be faded down by changing the respective syntax.

10 fadeSound 0.5 10 fadeMusic 1 0 fadeRadio 0.1

The first value is needed for the time when this option has to appear. The second one is
needed to define the loudness of the sound file. The command preLoadSound enables to
load the sound into the RAM while the mission is loading

preLoadSound "Track1"

Connecting sounds with text
It's possible to connect a sound with a text which will be displayed right in the moment
when the sound plays. There’re two ways to make it work. The first one is to use the
Stringtable and define the text as a string. The other way is to enter the text right into the
description.ext. Now the text appears when the sound begins to play. This option is
actually used for talk and even radio sounds. One can find a example in the script below:

132

// === Radio ==>
class CfgRadio
{
sounds[] = {RadioMsg1, RadioMsg2};

class RadioMsg1
{

name = "RadioMsg1";
sound[] = {"\sound\ radiosound1.ogg", db+10, 1.0};
title = "It´s done. I am ready for further orders.";
};

class RadioMsg2
{

name = "RadioMsg2";
sound[] = {"\sound\radiosound2.ogg", db+10, 1.0};
title = {$STR_RADIO_2};

};
};

Play a random sound out of an Array
Even with the sounds it’s possible to create a lot of things per random. A good method is
to define all sounds within an Array to get them selected by the Game automatically and
randomly later in the mission.

The following example will explain this by using a script. The used sounds don’t need to
be defined in the Description.ext because all of them are already defined in the Engine.
The used script can get caused just by using this Syntax:

[] exec “scripts\music.sqs”

Each time when the script will get called, a coincidence sound will be selected and played
out of the predefined Array.

Call a random sound without a script
Another, quite well method of the “sounddynamic” will be shown with the now following
Syntax example. The only disadvantage is that the user is not really able to select the
Sounds by him self.

It’s quite important, that all sounds does have the same name and are numbered at the
end of the Title, i.e: Track1, Track2 aso. ArmA© own sounds will be used here again, which
are defined as the same Principe like ATrack1 till Atrack27. The Queens Gambits Titles are
named from ATrack1 till ATrack9.

The now following Syntax contains a %1 instead of the actual value, which is used as a
placeholder only. If this syntax gets caused so the engine will generate a random value
out of a pool of numbers from 0 till 27 which will then replace the %1.

playMusic format ["ATrack%1",ceil random 27];

Note: The following entries don’t need a definition in the description.ext – Entries:

WithCare_Smile - WithCare_Suicide - WithCare_War - WithCare_What

One can use different sound types of course which will used besides the default music
tracks. If these sounds are not yet defined in the engine, so one need to define them into
the Description.ext.

The following Syntax example explains all again by using the command Say.

Name1 say format ["Help %1",ceil random 3];

Because all generated random values are never be rounded, so they need to be rounded
by usingthe ceil command which will round the number up or off. That´s necessary to let
the engine know which sound file has to be selected.

133

_music = ["ATrack1","ATrack6", "ATrack10", "ATrack11", "ATrack12", "ATrack13",
"ATrack14", "ATrack15", "ATrack19", "ATrack22"];

playMusic (_music select floor(random((count _music) - 0.5)));
exit;

C
h

ap
ter 5

It’s possible to set an identity for every unit individually. But that wouldn’t be necessary
because it would be a huge effort. So it’s more useful to set the identity for the main
characters only.

The identity has to be defined in the description.ext before it can be used in the mission.
To do this, just take a look at the example below.

As one can see, the names are to be freely defined. Only the faces and the voices are
predefined. Please make sure that the clasps were set on the correct position in the
Description.ext!

If one wants to set the predefined identity to the respective unit, the predefined name has
to be written into the init line of the unit.

Name setIdentity "YourName" or this setIdentity "Mr-Murray"

134

class CfgIdentities
{

class MrMurray
{

name = "MrMurray";
face = "Face33";
glasses = "none";
speaker = "Dan";
pitch = 1.00;

};

class Memphisbelle
{

name = "Memphisbelle";
face = "Face10";
glasses = "none";
speaker = "Howard";
pitch = 1.00;

};

class Dan
{

name = "Dan";
face = "Face22";
glasses = "none";
speaker = "Russell";
pitch = 1.00;

};
};

5.53 - Set Identity

C
h

ap
ter 5

If one wants to set the predefined identity to the respective unit, the predefined name has
to be written into the init line of the unit.

Name1 setIdentity "YourName" or this setIdentity "Mr-Murray"

This Identity can be saved and loaded again while used in a Campaign. The needed value
will be saved directly in the Objects.sav of the Campaign and can be deleted again by
using deleteIdentity “XYZ”.

Name1 saveIdentity "Name1Save" or Name1 loadIdentity "Name1Save"

To allocate a face to a unit just use this Syntax:

Name1 setFace "Face33" or this setFace "Face33"

Name1 setFace "MyPicture.jpg"

Possible pixel sizes: 1024*1024; 512*512; 256*256.
Maximal file size 100 Kb!

Glasses:
One can allocate glasses to a unit. Take a look at the examples which are listed below:

glasses = "Sunglasses"; Sunglasses
glasses = "Spectacles"; Normal glasses
glasses = "None"; No glasses

Speaker:
The following voices are selectable in ArmA© as of today:

Amy Dan Howard Robert Ryan
Brian Dusan Mathew Russell

Pitch:
By adjusting the pitch value (pitch = 1.00) the voice pitch can be adjusted higher or deeper.

It’s possible to allocate mimics to the units. This possibility enables the units to become
emotional. They can look friendly or even bad. To do this just use following syntax:

Name setMimic "Smile"

Normal - Surprised - Agresive - Hurt - Ironic - Smile - Cynic - Angry - Sad - Default

The following Syntax is changing the mimics by adjusting the values from 0 to 1.
Name setFaceAnimation 0.5

135

5.54 - Mimics

Armed-Assault contains 61 different faces which can
be selected. These faces are numbered from Face1 up
to Face57 and FaceR01 up to FaceR04. If the user
wants to use his own face file, this file needs to be
saved in the Missions- respective User folder. To make
it work use following Syntax:

The action commands are used to allocate the various actions to the units. So there are
several possibilities available for how to define them. Read the explanations here:

Object: The unit (name) which has to execute the action. If one wants to
use a vehicle then the Commander will be selected automatically.

Type: Name of the respective action (see action orders overview)

Target: This option is similar to Object and actually means the name of
the unit which has to execute the action.

Syntax:
The necessary syntaxes are listed here:

Name action [<type>]

Name action [<type>, <target>]

Name action [<type>, <target>, additional parameters]

To use additional parameters like weapons and / or magazines, these need to be defined
as shown in the lists. Fire is next to Action, another possibility but this only works for a
few orders:

Name fire
["PipebombMuzzle", "PipebombMuzzle", Pipebomb]
- Unit activates a satchel charge

["M203Muzzle", "M203Muzzle", "1Rnd_HE_M203"]
- Unit fires a granade

["M203Muzzle", "M203Muzzle", "FlareGreen_M203"]
- Unit is firing a flare

["HandGrenadeMuzzle", "HandGrenadeMuzzle", "HandGrenade"]
- Unit is throwing a hand grenade

["SmokeShellRedMuzzle", "SmokeShellRedMuzzle", "SmokeShellRed"]
- Unit is throwing a smoke grenade

["BombLauncher", "BombLauncher", "6Rnd_GBU12_AV8B"]
- Harrier is dropping a bomb

Name action
["TouchOff",Name] - Executes Satchel Charges

["Eject",Heli1] - Gets out

["Hidebody", Name2] - Unit is hiding a corpse

["CancelAction", Name] - Aborting action

136

5.55 - The Action Command

C
h

ap
ter 5

Overview of the most often used action commands
The following is a command overview of the most important action commands. Some of
them don’t work from of the beginning and / or haven’t been activated yet.

["None", <target>]
["GetInCommander", <target>]
["GetInDriver", <target>]
["GetInGunner", <target>]
["GetInCargo", <target>]
["Heal", <target>]
["Repair", <target>]
["Refuel", <target>]
["Rearm", <target>]
["GetOut", <target>]
["LightOn", <target>]
["LightOff", <target>]
["EngineOn", <target>]
["EngineOff", <target>]
["SwitchWeapon", <target>, <weapon index>]
["UseWeapon", <target>, <weapon index>]
["TakeWeapon", <target>, <weapon name>]
["TakeMagazine", <target>, <magazine type name>]
["TakeFlag", <target>]
["ReturnFlag", <target>]
["TurnIn", <target>]
["TurnOut", <target>]
["WeaponInHand", <target>, <weapon name>]
["WeaponOnBack", <target>, <weapon name>]
["SitDown", <target>]
["Land", <target>]
["CancelLand", <target>]
["Eject", <target>]
["MoveToDriver", <target>]
["MoveToGunner", <target>]
["MoveToCommander", <target>]
["MoveToCargo", <target>]
["HideBody", <target>]
["TouchOff", <target>]
["SetTimer", <target>]

137

["Deactivate", <target>]
["NVGoggles", <target>]
["ManualFire", <target>]
["AutoHover", <target>]
["StrokeFist", <target>]
["StrokeGun", <target>]
["LadderUp", <target>, <ladder index>, <ladder position>]
["LadderDown", <target>, <ladder index>, <ladder position>]
["LadderOnDown", <target>, <ladder index>, <ladder position>]
["LadderOnUp", <target>, <ladder index>, <ladder position>]
["LadderOff", <target>, <ladder index>]
["FireInflame", <target>]
["FirePutDown", <target>]
["LandGear", <target>]
["FlapsDown", <target>]
["FlapsUp", <target>]
["Salute", <target>]
["ScudLaunch", <target>]
["ScudStart", <target>]
["ScudCancel", <target>]
["User", <target>, <action index>]
["DropWeapon", <target>, <weapon name>]
["DropMagazine", <target>, <magazine type name>]
["UserType", <target>, <action index>]
["HandGunOn", <target>, <weapon name>]
["HandGunOff", <target>, <weapon name>]
["TakeMine", <target>]
["DeactivateMine", <target>]
["UseMagazine", <target>, <magazine creator>, <magazine id>]
["IngameMenu", <target>]
["CancelTakeFlag", <target>]
["CancelAction", <target>]
["MarkEntity", <target>]
["Talk", <target>]
["Diary", <target>]
["LoadMagazine", <target>, <magazine creator>, <magazine id>,

<weapon name>, <muzzle name>]

138

C
h

ap
ter 5

It's possible to allocate animations to a unit by using the animation commands. One can divide all
commands in two main sections. The first section is the command called switchMove which will
switch the unit into the respective animation. the second one is the playMove command, which
has to be used if one wants to run an animation. Some commands don't really cooperate with the
PlayMove command. If it happens, one has to use the SwitchMove command. Every animation
needs its time to get started. To avoid trouble, especially when a second animation follows after the
first one, it's recommended to use the delay command (~10). The delay is a small code which
pauses the game engine for the defined length of time before going on with the next command.

Animation commands are a nice feature. For example a base where some units are doing
some sports, talking to each other or another soldiers salute to one who is passing the
entrance to the base. All these animations are to be realized by using the animation
commands. The way how to write such a script is explained below:

Name playMove "Animationsbefehl"

Name switchMove "Animationsbefehl"

Using with groups:
Next to the default commands there’re different possibilities to select a unit which has to
cause an Animation per coincidence or what kind of Animation has to be caused.

To define a unit us following Syntax:

(Units group Group1 select 2) playMove "Animation"

Unit 3 of Group1 would cause the Animation now. But why has unit 3 been selected
although select 2 was defined? That is explained as follows.

select 0 - Leader
select 1 - Unit 2
select 2 - Unit 3

Randomly Group Variant
All of this is possible of course per coincidence. That would look as follows:

((Units group Group1) select ceil random 5) playMove "AnimationName"

In this case a random value between 0 and 5 has been created by using the command ceil
random 5 which will cause a Animation for the per coincidence selected unit of Group1.
It’s quite important to make sure that the unit will have a size of 6 units minimum.

139

5.56 - The animation command

Randomanimation
Here are several variants possible, but we will use only 2 of them. At first there´s the variant
that the Animations are numbered like the Panic-Animation which is numbered form
ActsPercMstpSnonWnonDnon_Panicking1 till 7. It´s important to make sure that the
names are always the same. The numbers are the only thing which are different to each
other.

Name playMove format ["Animation%1",ceil random 7];

Getting random animations out of an array
The other Variant is that the engine is selecting an Animation automaticaly out of an Array.
The advantage is that one can predefine some different Animations in this Array. That
happens usualy by using a script, which looks like this:

[Name] exec "scripts\animation.sqs"

The animation status
The animation status shows the user whether the Animation is still running or already
been ended. One can use this information of course for further things like conditions.

? animationState _Unit == "Anim1" : hint “Anim runs”

Ignoring end of Animation
Who doesn’t know that, that a unit is disabling the current animated position and is
changing back to the default position. That happens right then when the current
Animation has been ended. But if one likes that a unit has to keep being in the animated
position so the DisableAI-command is needed.

To do this one needs to give the syntax for the respective Animation at first and right
behind the DisableAI-command which will look like this:

Name playMove "Animation"

Name disableAI "Anim"

If its needed now that the unit has to change back to the default position and has to
adopt an attitude so one has to use the following Syntax:

Name enableAI "Anim"

A further possibility to get a Animation loop is the using of a Eventhandler.

Name switchMove "Animation";

Name addEventHandler ["AnimDone", {Name switchMove "Animation"}];

140

_Unit = _this select 0
_Anim = ["Anim1", "Anim2", "Anim3", "Anim4", "Anim5", "Anim6"];
_Unit playMove (_Anim select floor(random((count _Anim) -0.5)));
exit;

C
h

ap
ter 5

A list with the most used commands will be shown on the list below:

141

Animation Description
AmovPsitMstpSlowWrflDnon
ActsPercMstpSnonWnonDnon_MarianQ_TVstudioMan_Loop1
ActsPercMstpSnonWnonDnon_MarianQ_TVstudioMan_Loop2
ActsPercMstpSnonWnonDnon_MarianQ_TVstudioMan_Loop3
ActsPercMstpSnonWnonDnon_MarianQ_TVstudioMan_Loop4
ActsPercMstpSnonWnonDnon_MarianQ_TVstudioMan_LoopLong
ActsPercMstpSnonWnonDnon_MarianQ_WarReporter
AwopPpneMstpSgthWnonDnon_throw
AwopPercMstpSgthWrflDnon_Throw1
AswmPercMrunSnonWnonDf_AswmPercMstpSnonWnonDnon
DeadState
SprintBaseDf (SprintBaseDfL=rennt links / SprintBaseDfR rennt rechts)
SprintCivilBaseDf (SprintCivilBaseDfL=links / SprintCivilBaseDfR=rechts)
AmovPercMstpSnonWnonDnon_AwopPercMstpSoptWbinDnon
AmovPercMstpSnonWnonDnon_Ease
AmovPercMstpSnonWnonDnon_AmovPknlMstpSnonWnonDnon
AmovPercMstpSsurWnonDnon
AmovPercMstpSnonWnonDnon_AinvPknlMstpSnonWnonDnon
AmovPercMstpSlowWrflDnon_AmovPsitMstpSlowWrflDnon
AinvPknlMstpSnonWnonDnon_AmovPknlMstpSrasWpstDnon
AinvPknlMstpSlayWrflDnon_AmovPknlMstpSrasWrflDnon
AinvPknlMstpSlayWrflDnon_healed
AinvPknlMstpSlayWrflDnon_healed2
AinvPknlMstpSnonWnonDnon_healed_1
AinvPknlMstpSnonWnonDnon_healed_2
AinvPknlMstpSlayWrflDnon_medic
AinvPknlMstpSnonWnonDnon_medic_1
AinvPknlMstpSnonWnonDnon_medic_2
AidlPercMstpSnonWnonDnon08
AinvPknlMstpSnonWnonDnon_1
AinvPknlMstpSnonWnonDnon_2
AinvPknlMstpSnonWnonDnon_3
AinvPknlMstpSnonWnonDnon_4
AmovPercMrunSlowWrflDf_AmovPpneMstpSrasWrflDnon
AmovPercMstpSnonWnonDnon_carCheckPush
AmovPercMstpSnonWnonDnon_carCheckWheel
AmovPercMstpSnonWnonDnon_carCheckWash
AmovPercMstpSnonWnonDnon_exerciseKata
AmovPercMstpSnonWnonDnon_exercisekneeBendA
AmovPercMstpSnonWnonDnon_exercisekneeBendB
AmovPercMstpSnonWnonDnon_exercisePushup
AmovPercMwlkSlowWrflDf_ActsPercMstpSlowWrflDnon_HitLeg
AmovPercMstpSlowWrflDnon_ActsPercMstpSlowWrflDr_HideFromFire
ActsPpneMstpSnonWnonDnon_AmovPercMstpSnonWnonDnon_Injured3
AsigPercMstpSlowWrflDnon_AmovPercMrunSlowWrflDnon_GoGo

Sitting down
Sitting
Sitting and talking
Sitting and talking
Sitting and talking
Sitting and talking
Standing around
Lying and thows a grenade
Thows a grenade
Unit swims
Unit dies
Running with weapon
Running without weapon
Taking Binoculars
If attitude assumes
Kneels down on one knee
Hands behind the head
Unit puts a pipebomb
Sitting down
Kneels down and gasps
Kneels down and gasps
Heal Animation
Heal Animation
Heal Animation
Heal Animation
Bandaging a victim
Bandaging a victim
Bandaging a victim
Shouldered the weapon
Kneeling down (Ammobox)
Kneeling down (Ammobox)
Kneeling down (Ammobox)
Kneeling down (Ammobox)
Takes cover
Vehicle check
Vehicle check
Washing car
Martial Arts
Knee bend slow
Knee bend fast
Pushup
Hit leg
Hide from fire
Victim lays on the ground
Forward guys!

142

Animation Description
AmovPercMstpSlowWrflDnon_Salute
AmovPercMstpSnonWnonDnon_seeWatch
AmovPercMstpSnonWnonDnon_talking
AmovPercMstpSlowWrflDnon_talking
ActsPercMstpSnonWnonDnon_MarianQ_shot1man
ActsPercMstpSnonWnonDnon_MarianQ_shot3man
ActsPercMstpSnonWnonDnon_MarianQ_shot4man
ActsPercMstpSnonWnonDnon_MarianQ_shot5man
ActsPercMstpSnonWnonDnon_MarianQ_TVstudioMan_Loop1
AmovPsitMstpSlowWrflDnon_Smoking
AmovPsitMstpSlowWrflDnon_WeaponCheck1 (Number 1 to 2)
AmovPsitMstpSnonWnonDnon_ground
AmovPsitMstpSlowWrflDnon
ActsPercMstpSnonWpstDnon_InterrogationSoldier
ActsPercMstpSnonWnonDnon_InterrogationVictim
ActsPercMstpSnonWrflDnon_ArrestingSoldier
ActsPercMstpSnonWnonDnon_ArrestingMan
ActsPercMstpSnonWnonDnon_ArrestingManLoop
AmovPlieMstpSnonWnonDnon
ActsPknlMstpSnonWnonDnon_TreatingInjured
ActsPpneMstpSnonWnonDnon_Injured1 (Number 1 to 2)
ActsPknlMstpSnonWrflDnon_TreatingSoldier
AsigPercMstpSlowWrflDnon_SendMenInAction
ActsPercMstpSlowWrflDnon_listeningOrdersUnderFire
ActsPknlMstpSnonWnonDnon_ThingPassingStill
ActsPercMrunSlowWrflDf_FlipFlopPara
AsigPercMstpSlowWrflDnon_GoGo
ActsPercMstpSnonWnonDnon_ThingPassingStill
ActsPercMstpSlowWrflDnon_ThingPassingMoving
ActsPercMwlkSlowWrflDnon_PatrolingBase1 (Number 1 to 4)
ActsPercMstpSlowWrflDnon_Lolling
ActsPercMstpSnonWnonDnon_DancingDuoIvan
ActsPercMstpSnonWnonDnon_DancingDuoStefan
ActsPercMstpSnonWnonDnon_DancingStefan
ActsPpneMstpSnonWnonDnon_Panicking
ActsPercMstpSnonWnonDnon_Panicking1 (Number 1 to 7)
ActsPercMrunSlowWrflDf_TumbleOver
ActsPknlMstpSlowWrflDnon_ThingPassingMoving
ActsPercMstpSlowWrflDnon_Listening
ActsPercMstpSnonWnonDnon_Listening
ActsPercMstpSnonWnonDnon_Talking1 (Number 1 to 2)
ActsPercMstpSlowWrflDnon_Talking1 (Number 1 to 2)
m2s1kancler
m2s2kancler
m2s1pobocnik
m2s2Zoldak1

Soldier is saluting
Watching the clock
Talking
Talking
Talking
Talking
Patroling
Patroling2
Sitting
Sitting and smoking
Sitting, checking the weapon
Sitting/Hands back
Sitting / Weapon on ist fold
Questioning
Victim of questioning
Arresting a person
Victim of arresting
Lying fettered
Got hit and lying on the ground
Convulsed with pain
Convulsed with pain
Healing injured within battle
Cowering and giving orders
Cowering and listening to orders
Kneeing on the ground and talking
Running and rolling forward
Go go go
IDcard controll
IDcard controll
Feeling boring
Yawning and stretching
Happy dancing
Happy dancing
Happy dancing
Panic animation
Panic animation
Stumbling but going on
Running cowered and securing
Listening to responsiveness
Listening to responsiveness
Standing without weapon and talking
Standing with weapon and talking
Running / giving order
Standing and listening
Standing and talking
Standing and aiming

143

Animation Description
m2s2Zoldak2
m2s2Orlando_centered
m2s2Wicks_centered
m2s2Lamb_centered
m2s2kancler_centered
m2s2bodyguard_centered
XOutroZoldak1
XOutroZoldak2
XOutroLamb
XOutroOrlando
m1s1Wicks
m1s2Wicks
m2s1wicks
m2s2Wicks
m2s3Wicks
x01Wicks
m5s1orlando
m2s2Orlando
m2s3Orlando
m6aS1Orlando
m6aS2Orlando
x03Orlando
x04Orlando
m5s1Gonzales
m6aS1Gonzales
m6aS2Gonzales
M6bs2Gonzales
M6bs3Gonzales
x04Gonzales
x05s1Gonzales
x05s2Gonzales
x05s4Gonzales
x05s5bGonzales
m1s1Pedros
x05s1Lamb
x05s2Lamb
x05s3Lamb
x05s4Lamb
x05s5aLamb
x05s5bLamb
M6bs2Lamb
M6bs3Lamb
x01Lamb
x03Lamb
m1s2lamb
m5s1Lamb

Standing / aiming from hip
Lifting hands / protecting themselves
Standing with gun in hips
Holding weapon with gun barrel up
Running around scared
Standing with hands up and falling
Standing inflected forward
Leaning to someone
Weapon in hip and pitching
Standing with folded arms
Holding weapon on board carrier
Holding weapon near be hips and giving orders
Holding weapon up on hips
Holding weapon right in front of his chest
Got hit lying on the ground
Holding weapon at board carrier and giving orders
Walking around, weapon shouldered and gesticulating
Throwing hands up and capitulate
Standing with shouldered weapon
Standing with folded arms
Standing with folded arms
Running around
Running around and gesticulate
Running around and gesticulate
Standing and listening
Running around and gesticulate
Running around and gesticulate
Standing, gesticultaing and folding arms
Watching the ground and running around
Standing with hand at the chin
Standing with hand at the chin and gesticulating
Running forward and is telling
Folding Hands and explaining
Crying for help and pointing somethings with hands
Standing with lifted weapon
Standing with lifted weapon
Standing with lifted weapon and gesticulating
Standing with lifted weapon and running
Standing with lifted weapon and gesticulating
Standing with lifted weapon and gesticulating
Running with weapon under the arm and gesticulating
Standing with weapon under the arm
Running with lifted weapon
Running with weapon in the front of his body
Lifting weapon and putting hand on ist back
Lifting weapon with hands on ist magazine

C
h

ap
ter 5

By using the following syntax it’s possible to disable the AI units. That means that those
units will not fire and not move. The following possibilities are available:

Name disableAI "Move" - Unit stops moving
Name disableAI "Target" - Unit is no longer observing enemy units
Name disableAI "Autotarget" - Unit doesn’t watch anything
Name disableAI "Anim" - AI is no longer able to change any animation
Name disableAI "Watch" - Unit is no longer looking around

By using enableAI all the effect will get deleted and the unit is behaving normal again.

This order is quite useful to make objects or units move over the map. If one wants to
generate an aircraft which has to be in the air when it has been generated, this order will
make it move in a pre-defined direction so that the pilot has time to speed up his aircraft.
To do this just use following syntax:

Name setVelocity [0,100,100]

By using the following syntax it's possible to get some information displayed on the
screen. There are several possibilities to do this:

hint "Text" - Text appears after call
hintC "Text" - Text appears after call and the game will be paused
hintCadet "Text" - Appears in Cadet mode only

If a unit is changing his position and stance when he should be holding still, the following
commands can be used to hold the unit in place in a specific stance. The orders kneel and
kneelDown are intended on the part of BI but they don’t really work up to version 1.14. But
those commands shall work in further versions so you can get the needed syntaxes below:

Name setUnitPos "Up" - Unit keeps standing
Name setUnitPos "Middle" - Unit is kneeling
Name setUnitPos "Kneel" - Unit is kneeling
Name setUnitPos "KneelDown" - unit is kneeling and is changing between

lying and kneeling by itself
Name setUnitPos "Down" - Unit is lying
Name setUnitPos "Auto" - Unit decides for itself

144

5.57 - Disable AI units

5.59 - The Information Text

5.58 - SetVelocity

5.60 - Units keeps lying or keeps standing

Every Object which is located on the map, owns an own ID which is individual to each
single Object, indifferently whether it’s a tree, bridge, house or a part of a street. One can
get the ID´s displayed by clicking the respective button in the Editor which is called Show
ID´s. Now its possible to check the status of each Object, may be to use it for a condition
or lots of further reasons which are dedicated to the mission targets.

In Operation Flashpoint® the following command was used:

(Object 12345) setDamage 1

But this command is unfortunately no more running in ArmA©. Now the both commands
NearestObject and NearestBuilding are to be used.

To call the respective object one need to place a game logic or a trigger right onto the
object and notes its ID. The following Syntax is calling the respective object. It´ll defined
into the initline of the logic:

House=position this nearestObject 441616

or House=nearestObject this resp. House=nearestBuilding this

The word House is just a variable and can be free defined. Object1 would also a possible
way to name the object. The rest of the Syntax is the actual important one, because the
ID at the end of the line, will call the object. The logic needs to be placed directly onto the
object, its also possible to use some an object then a game logic. One should take care
that the logic or object will be placed right onto the ID or close to it and that the Syntax
will defined accurate. If one is using this command with a direct ID call, so the logic can
be set free on the map.

A example how it would look like in the Editor:

Once the Object or ID got a name allocated (as shown above: House) so it can be used in
different ways. There’re some examples shown on the next page about how to use this
possibility now.

Allocate a dammage to an Object:
Once a object received a name so one can either dammage or heal it again. To do this the
already known SetDamage Syntax is needed:

House setDamage 1

145

C
h

ap
ter 5

5.61 – Using ID´s

Getting dammage status of an object:
By using the following Syntax, one has the possibility to receive the dammage status of
an object.

getDammage House

This information can be used again for further things like conditions or any other things,
to check whether the building or the respective object received a dammage value which
is even higher or less then a predefined one. used in a checking trigger would look like this:

Checking trigger:

Axis a/b: 0
Condition: getdammage House > 0.7
on Activation: hint “The building is heavy damaged!”

Destruction as condition or Mission target:
As explained on the prior side, the user has now the possibility to use the destruction of
an object as condition or a mission target. If a condition has to be defined, so it needs to
be written in the onActivation line of a trigger or waypoint.

Condition : ! (alive House) or not alive House

If the destroyed building has to be defined as mission target so a checking trigger is
needed which only needs to be placed on the map defined as End 1.

Checking trigger:

Type: End 1
Once

Axis a/b: 0
Text: Mission Target
Condition : ! (alive House)

Its recommended to use the countdown again, to make sure, that End 1 will not get
caused right when the building has been destroyed but a little later. Chapter 4.6 will
explain the way how to end a mission, much more better.

146

Indestructible Object:
If one wants that some objects are not to be destructible so one can use the following
possibility. At first the object needs to be named as explained in Chapter 5.61 and
furthermore a checking trigger has to be placed on the map which has following settings:

Checking trigger:

Type: Repeatedly
Axis a/b: 0
Condition: getDammage House > 0.1
on Activation: House setdamage 0

If the object is receiving a damage which is higher then the value 0.1, so the damage will
reset back to 0. Because the trigger was set to repeatedly so the building will never be
destroyed.

Opening/closing doors of an object:
Some objects have animated doors which can either be opened or even closed by using
the action menu. Now its possible to control these doors, if the respective object has been
named before as explained in Chapter 5.61. The needed Syntax sounds:

House animate ["dvere1",1]

Dvere1 stands for door 1. Each further door does have to be named Dvere2, Dvere3 aso.
They will be closed with 0 and get opened again with 1. Further possibilities are:

Bare animate ["Bargate",1] - To control the barrier

Target animate ["Terc",1] - To control the target

Deactivate lanterns resp. lights:
One can deactivate lanterns or even lights by using the ID´s. But before the object needs
to get named at first by using the following Syntax:

Light1=nearestObject this

One only needs to place a game logic next to the lantern and enter the Syntax into the
initline. Then it can be called from any place on the map (waypoint, trigger etc.). To do this
use following command:

Light1 switchLight "Off"

If both command lines are entered into the initline of the logic so the lights will be
deactivated so far the mission begins.

Light1=nearestObject this; Light1 switchLight "Off"

147

C
h

ap
ter 5

Many buildings in Armed Assault® are passable as they was in Operation Flashpoint®. But
one of the new ArmA® features is that the leader of a group can allocate his Soldiers
special positions in a building. To do this only a single mouse click is needed, that will
take the effect that the resp. soldiers will move to their desired postions.

These positions are fixed defined positions inside a building modell. Each positions owns
an own number. The user can now place the units directly on the desired positions inside
or even on the top of the building. A perfect example is the Hotel which has around 265
fixed positions, so the Hotel own nearly the most positions of all used buildings in the
game. Because of the fact that its quite unclear where all these positions are located so
all five levels with their positions in the Hotel, are shown on the next pages. A special
feature can be found in Chapter 6.16. This script will become units patrolling through
the building.

To place units inside a building so one only needs to place a unit directly onto the building
and defines the following Syntax into the initline of the unit

this setPos (nearestBuilding this buildingPos PositionNumber)

This command is much less complicate then name setPos [X,Y,Z], because all the needed
coordinates doesn’t have to get determined before. If the building has been named as
explained in Chapter 5.61, so following Syntax can be used as well:

this setPos (HouseName buildingPos PositionNumber)

If one wants to place units randomly inside a building so the random command has to be used.

this setPos (nearestBuilding this buildingPos Random 265)

By using this command a random position will be defined now which is located
somewhere between 0 and 265.

Ground Floor (Positios 0 till 42)

148

5.62 – Placing units inside a building

1. Floor (Positions 44 till 101 + 262, 263, 264, 265)

2. Floor (Positions 104 till 165 + 260)

149

C
h

ap
ter 5

3. Floor (Positions 166 till 227 + 259)

Roof (Positions 228 till 258)

150

Radio station

Ground Floor (Positions 0 till 27)

1. Floor (Positions 28 till 47)

151

2. Floor (Positions 48 till 70)

Roof (Positions 71 till 90)

152

As units can be placed onto a special position, so one can ask them to move to an x –
desired position within the respective building. To do this just use following Syntax

Name doMove (nearestBuilding this buildingPos 123)
Name doMove (House1 buildingPos 123)

Or to another random position:

Name doMove (House1 buildingPos random 123)

The way how to name a object or a building has been explained well accurate in Chapter
5.61. In example:

House1=nearestBuilding this

It´s possible to get the position of a unit either displayed as text or as condition for
somethings else. The already known XYZ- values are to be used as normal. The only
different is that the both commands are causing different results:

getPos - displayes the height over ground resp. over an object
getPosASL - displays the height over the sea level exactly

X-Position – getPos Name select 0

Y-Position – getPos Name select 1

Z-Position – getPosASL Name select 2

Getting the position displayed as text:
To do this the hint format and the titletext syntaxes are to be used, which can be defined
as needed. It´s possible to get either one or all three values displayed concurrently. The
following command will display the position in XYZ order incl. the exact height over the
sealevel. The GetPosASL command is not interesting for the X and Y values..

hint format ["%1", getPosASL Name] or hint format ["%1", position Name]

If one wants one single value only, so the Syntax need to be defined with the respective
Select-value. In example the Determination of the height above the sea.

hint format ["%1", getPosASL Name select 2]

hint format ["Your current hight is %1", getPosASL Name select 2]

titleText [format["%1 Meter", getPosASL Name select 2],"plain down"]

153

C
h

ap
ter 5

5.63 – Unit is movin to desired house position

5.64 – Getting position displayed

One shouldn´t embroider to getting positions displayed.

Position as condition:
Now it´s possible to use the position of something as a condition for something. I.E. the
trigger has to execute so far the helicopter called Heli1 is flying heigher then 100 meters
or the player was warned because his Y value became much higher the it actually had to
be. That would happen if the player would run/drive/fly to far either in nothern or
southern direction. By using this way ist possible to border the battlefield very easy. To do
the same for the altitude just use the following syntax::

? getPosASL Heli select 2 > 100

Or in example to check whether the unit has already exceeded the Y - value.

? getPosASL Name select 1 > 10600

154

One can see the eventhandler as a kind of condition, which can be allocated to one or
more units or objects. If the condition has been caused so the predefined action will be
executed. So one is allocating an event to a unit which is defined as condition for some
things. It’s pretty easy to built in a eventhandler (addEventhandler) or to remove it again
(removeEventhandler).

Adding an Eventhandler
To add an Eventhandler just use the following Syntax:

Name addEventHandler ["Eventhandler", Code]

Code stands for the action which has to be caused when the condition / event has been
executed. One can define nearly everythings what one wants to do. In the following
example the Eventhandler Killed was given and as code a sript which will be caused so
far the Event, the death of the respective unit, became true.

Name addEventHandler ["Killed", {_this exec "script.sqs"}]

The Eventhandler will be given to several units within the next example. If one of these
units will be killed, so the predefined text „Test“ will appear on the screen.

{_x addEventHandler ["Killed", {hint "Test"}]} foreach [Name1, Name2,...]

A further great example is the textmessage which displays the information who killed
who. This option is a special feature espacially for the Multiplayer games. The
Eventhandler needs to be given to all units which are dedicated to. The Syntax looks as
follows:

{_x addEventHandler ["Killed", {hint format["%1 killed by %2",
_this select 0, _this select 1]}]} foreach [S1, S2, S3, S4]

If the unit S1 is been killed by unit S2, so the name S1 will be displayed within a hint, as
defined in the Editor. S1 killed by S2. The hint format Syntax individually:

hint format ["%1 killed by %2",_this select 0, _this select 1]

Defining a Eventhandler for a unit within a Area
It´s possible to give an Eventhandler for several units within a trigger area. In example
the Fired eventhandler, which is causing the Alarm.sqs.

{_x addEventHandler ["Fired",{_this exec "Alarm.sqs"}]} foreach thisList

Removing an Eventhandler again:
They can be removed as simple as the were implanted. Just use the following Syntax:

Name removeEventHandler ["Killed", 0]

155

C
h

ap
ter 5

5.65 - The Eventhandler

Overview about most of the Eventhandlers:
The table below is explaining most of the existing Eventhandlers including a syntax example.

156

Eventhandler Example
AnimChanged Syntax:

Name addEventHandler ["AnimChanged", {[Einheit, Animation]}]
Will always be caused when the predefined animation is getting started.

AnimDone Syntax:
Name addEventHandler ["AnimDone", {[Einheit, Animation]}]
Will always be caused when the predefined animation is getting ended.

Dammaged Syntax:
Name addEventHandler ["Dammaged", {hint str (_this)}]
Will be caused when the respective unit was damaged, also displays the kind of
damage.

Engine Syntax:
Name addEventHandler ["Engine", {hint str (_this)}]
Will be caused when the engine of the vehicle gets started.

Fired Syntax:
Name addEventHandler ["Fired", {hint "Hold fire!"}]
This Eventhandler will be caused if the unit is firing its weapon.

Fuel Syntax:
Name addEventHandler ["Fuel", {hint str (_this)}]
Will be caused when the fuelstatus has been changed (1=full/0=empty)

Gear Syntax:
Name addEventHandler ["Gear", GearState]
GearState: TRUE – Gear down/ FALSE – Gear up

GetIn Syntax:
Name addEventHandler [Name, VehiclePosition, VehicleName]
Will be caused if the unit is getting into the vehicle
Positions: Driver, Gunner, Commander, Cargo

GetOut Syntax:
Name addEventHandler [Name, VehiclePosition, VehicleName]
Will be caused if the unit is getting again out of the vehicle.

Hit Syntax:
Name addEventHandler ["Hit", {hint "This unit were hit!"}]
This action is unfortunately not always causing.

Init Syntax:
Name addEventHandler []
Only to be used in a config!
Will be caused atumaticaly when the mission is started, not really important.

IncomingMissile Syntax:
Name addEventHandler ["IncomingMissile", {hint "Warning!"}]
Will be caused if the unit is getting shot by a rocket.

Killed Syntax:
Name addEventHandler ["Killed", {_this exec "Script.sqs"}]
Will be caused if the unit has been killed.

Text Displays are, as already known, not only important for a mission but also for editing
or scripting. One has the possibility to get certain information displayed on screen to
work with later in the editing or scripting process or to use for other things. The following
contents will explain the different Text Displays in Armed Assault®. This will also explain
how toimplement Text Displays and Text variables.

The Hint-Variant
At first there’s the hint variant, which will create text in the upper left corner on the screen.
This text can be adjusted to the user's requirements.

Default: hint "My Text"

The information about the coordinates of the player over sea level:

hint format ["Coordinates: %1", getPosASL Player]

hint format ["Your Altitude is %1", getPosASL Player select 2]

Or the information about the weapons, resp. the kind of ammunition or the side which
this unit belongs to:

hint format ["%1", weapons Name];

hint format ["%1", magazines this];

hint format ["%1", side Name];

hint format ["%1 versus %2", side Name1, side Name2];

Used with an Event handler:

Name addEventHandler ["Fired", {hint format ["%1", _this]}]

Used with a Stringtable value:

hint localize "STR_MP_04"

The Title Text-Variant
The title text variant works as well as the hint variant does. The only difference is that the
text will not appear in the upper left corner of the screen, but at a position defined by
the user. For example, right in the middle of the screen, or even on the bottom.

Default: titleText ["Paraiso\nOne day later…", "Plain",4]

Variant to get the distance between two units or the Player displayed:

titleText [format["%1 Meter", Name1 distance Name2],"Plain Down"]

titleText [format["%1 Meter", getPosASL Player select 2],"Plain Down"]

Used with a Stringtable value:

titleText [format [localize "STR_ART_H7"], "Plain Down"];

157

C
h

ap
ter 5

5.66 - Different text displays

There are lots of text variables already predefined in Armed Assault® which are used as
text displays all over in the game and in the menus. Some of these entries are well fit to
be used with the user's mission without defining a new Stringtable.csv. The table below
will show some of the most important entries which are already predefined in ArmA®.
They can easily be used just by using the hint or the Title-Text command.

158

Source Text
STR_ARMEDASSAULT_CAPITAL
STR_ARMEDASSAULT
STR_ARMA_SPLASH_1
STR_SAHRANI_ISLAND
STR_SAHRANI
STR_SAHRANI_SOUTH
STR_SAHRANI_NORTH
MISSION_COMPLETED_CA
MISSION_FAILED_CA
MISSION_SUCCESFULL
MISSION_DEFEATED
STR_MISSION_OBEY
STR_MP_GAME_DESC_OBJECTIVES
STR_MP_GAME_DESC_PILOTDOWN
STR_MP_GAME_DESC_CSWEAP
STR_MP_GAME_DESC_ESCAPE
STR_MP_GAME_DESC_WARCRY
STR_MP_GAME_DESC_CITYCONFLICT
STR_ART_H1
STR_ART_H8
STR_ART_H7
STR_ART_H3
STR_ART_H6
STR_ART_H9
STR_ART_H10
STR_MARKER_START
STR_WP_HOLD
STR_WP_BASE
STR_WP_ENEMYBASE
STR_WP_MEETINGPOINT
STR_WP_PICKUP
STR_WP_SAD
STR_WP_ATTACK
STR_WP_DESTROY
STR_WP_DESTROYTARGET
STR_WP_SEIZEANDHOLD
STR_WP_EXTRACT
STR_MP_GAME_DESC_HUNTING

Armed Assault
ARMED ASSAULT
Präsentiert
Sahrani Island
Sahrani
The Kingdom South-Sahrani
Democratic Republic Sahrani
Mission accomplished
Mission failed
Mission successful
Enemy forces defeated
Mission failed, you haven't followed your orders.
Destroy the enemy targets
Find and rescue the Pilot.
Come home alive!
Escape from the Island with the Helicopter!
A massive planed Operation: Set the Town free.
Conquer and defend the Town.
Click on the map
ENTER VALID COORDINATES FIRST!
TARGET COORDINATES ACCEPTED
FIREMISSION WILL GET STARTED
OUT OF RANGE SELECT NEW TARGET POSITION!
FIREMISSION OVER
CAN NOT FIRE
Infiltration POINT
Keep your position
Base
Enemy Base
Meeting Point
Pick up position
Seek and destroy
Attack
Destroy
Destroy target
Conquer and defend
Exfiltration Point
Transport strategic resources under fire

5.67 - Stringtable Basic Values

ArmA© offers the possibility to create or delete Waypoints for units or groups while
running a mission. These waypoints can also be equipped with certain types and functions.

Syntax:

WP1 = Name addWaypoint [position, Radius]

The following example will create a waypoint called WP1 for Group 1, defined with a
radius of 100 meters right on the position of the Player.

WP1 = Group1 addWaypoint [position Player, 100]

This waypoint will also get a function allocated, which is listed in Chapter 1.5. In this case
this waypoint with name WP1 will receive the function “Sentry”.

WP1 setWaypointType "SENTRY"

[Group1, 2] setWaypointType "SENTRY"

Additionally to this there are a lot of further possibilities to adjust this waypoint. The basic
definitions to define a waypoint can be found in Chapter 1.5 within the sub-item - Insert
Waypoint. Additionally to this, the following commands are available.

Remove Waypoint
One can remove waypoints as easily as they can be created. To do this just use following
syntax:

deleteWaypoint [Name, Waypoint Number]

deleteWaypoint Waypoint Name

159

C
h

ap
ter 5

Command Example
[Name, Waypoint Number] setWaypoint… …

setWaypointBehaviour [Group1, 2] setWaypointBehaviour "AWARE"
Waypoint name setWaypointBehaviour "AWARE"

setWaypointCombatMode [Group1, 2] setWaypointCombatMode "RED"
setWaypointDescription [Group1, 2] setWaypointDescription "Go to Position!"
setWaypointFormation [Group1, 2] setWaypointFormation "LINE"
setWaypointHousePosition [Group1, 2] setWaypointHousePosition 1
setWaypointPosition [Group1, 2] setWaypointPosition [position player, 0]
setWaypointScript [Group1, 2] setWaypointScript "Target.sqs player"
setWaypointSpeed [Group1, 2] setWaypointSpeed "FULL"
setWaypointStatements [Group1, 2] setWaypointStatements ["true", ""]
setWaypointTimeout [Group1, 2] setWaypointTimeout [5, 10, 6]
setWaypointType [Group1, 2] setWaypointType "HOLD"
showWaypoint [Group1, 2] showWaypoint "ALWAYS"
setWpPos [Group1, 2] setWpPos [x, y, z]
getWpPos _Pos = getWpPos [Group1,1]

5.68 - Create Waypoints

Triggers are easily created as units, objects and waypoints, which can give many new
editing possibilities to the user. This part will explain how to create triggers and also how
to adjust them by using syntaxes.

Because a trigger needs, up to the user’s plans, a little more than just a short syntax, I
suggest to do this by using scripts or functions.

Here is an overview with the respective explanations.

CreateTrigger
This command will create a default trigger first. This one can basically defined with a
name. Although it is already defined with a name, it's nevertheless still rough and needs
to be adjusted by using the following commands. But first the creation:

ASL1 = createTrigger ["EmptyDetector", position Player]

ASL1 = createTrigger ["EmptyDetector", [X,Y,Z]]

The trigger with the name ASL1 will be created right on the position of the player or even
on given coordinates.

SetTriggerArea
The trigger ASL1 still needs to get a size, angle and conformation which will be defined
as follows. While setting these options, without the conformation, will be defined in
numbers. The conformation, so circle or rectangle are to be defined by using true or false,
where true stands for rectangle and false for circle.

ASL1 setTriggerArea [X, Y, Angle, Form]

SetTriggerText
Now one has the possibility to define a text to the trigger. This is basically senseful by
using Radio Triggers. That’s why one would already have the respective text displayed in
the Radio on the map.

ASL1 setTriggerText "Artillery-Support"

SetTriggerTimeout
This option will define the Timeout of the trigger and whether it shall work as a
countdown or even timeout. The values for the times have to be defined as numbers
again.

ASL1 setTriggerTimeout [Min, Mid, Max, False]

160

5.69 - Create Trigger

SetTriggerType
Additionally to all the options explained above, a Type can also be defined. These are
also predefined in the Editor.

ASL1 setTriggerType "WIN"

Overview of the Types:

"NONE" None
"WEST G" Guarded by West
"EAST G" Guarded by East
"GUER G" Guarded by Resistance
"SWITCH" switch
"END1" End 1
"END2" End 2
"END3" End 3
"END4" End 4
"END5" End 5
"END6" End 6
"LOOSE" Loose
"WIN" Win
"WEST SEIZED" Conquered by West
"EAST SEIZED" Conquered by East
"GUER SEIZED" Conquered by Resistance

SetTriggerActivation
This option will define the kind of activation, whether activated by West, East, by Radio
or whatever. The syntax:

ASL1 setTriggerActivation ["WEST", "EAST D", true]

This trigger was defined as follows:

Activation by West // Detected by East // Repeatedly

First part of the array:

Side: "NONE", "EAST", "WEST", "GUER", "CIV", "LOGIC", "ANY"
Radio: "ALPHA", "BRAVO", "CHARLIE", "DELTA", "ECHO",

"FOXTROT", "GOLF", "HOTEL", "INDIA", "JULIET",
Others: "STATIC", "VEHICLE", "GROUP", "LEADER", "MEMBER".

Second part of the array:

"PRESENT", "NOT PRESENT", "WEST D", "EAST D", "GUER D", "CIV D".

Third part of the array:
In this case true means repeatedly and false means only a single activation of the trigger.

161

C
h

ap
ter 5

SetTriggerStatements
The Condition line, the OnActivation line and the OnDeactivation line, of the newly
created trigger, will be defined with this option. Please take care about the correct
diction within the Array!

ASL1 setTriggerStatements [Condition, Activation, Deactivation]

ASL1 setTriggerStatements ["this", "Value = true", "Value = False"]

SetMusicEffect
This option will set the Music effects of the trigger.

ASL1 setMusicEffect "ATrack1"

The default or original music tracks don't need a dedicated entry within the
Description.ext and are listed from ATrack1 to ATrack27. The names of the Queens
Gambit Music tracks are listed from QGTrack1 till QGTrack9.

SetSoundEffect
This option will add a sound effect to the trigger.

ASL1 setSoundEffect [Anonymous, Voice, Environment, Trigger]

ASL1 setSoundEffect ["Alert”, ” ”, ” ”, ” ”]

Following is a little list of some available sounds:

Stream, Alarm, BadDog, BirdSinging, Chicken, Cock, Cow, Crow, Crickets1,
Crickets2, Crickets3, Crickets4, Dog, Frog, Frogs, LittleDog, Music, Owl, Wolf

One has the possibility to create markers globaly or localy. This takes the advantage to the
Local ones that not everyone can see them, but also only those who are dedicated to. It´s
possible to create markers even for a single Side or even for a special player only.

CreateMarker
By using this command a marker will be created and will also receive a name and a
position. Note: Normally the marker will be set in quotes while calling. This is not really
necessary for the created marker. But it´s not a bad practice to define all markers, whether
they are used normally or belately created, in quotes " ".

_Marker1 = createMarker ["M1", position Player]

_Marker1 = createMarker ["M1", [X,Y]]

162

5.70 - Create Marker

SetMarkerType
The type of the marker will be defined by using the parameter SetMarkerType.

"M1" setMarkerType "Arrow"

The list below will give an overview of the available icon types for the markers:

SetMarkerText
Thy text of the marker will be defined by using this syntax:

"M1" setMarkerText "Hold Position"

SetMarkerShape
The shape of the marker will be defined by using this syntax. Whether it should be an
Icon, rectangle or even a circle. It´s not realy neccesary to define the size for icons because
they will always be displayed by default size, but not the rectangle or the circle, so it´s
important to define a size for those.

"M1" setMarkerShape "ELLIPSE"

One will have the following selections:

"RECTANGLE" – "ELLIPSE" – "ICON"

SetMarkerBrush
One can define the look of a marker by using the MarkerShape Rectangle or MarkerShape
Ellipse command

"M1" setMarkerBrush "FDiagonal"

The following designs can be selected:

Horizontal - Horizontal Lines
Vertical - Vertical Lines
Grid - Horizontal Grid
DiagGrid - Sloping Grid
FDiagonal - Sloping Grid
BDiagonal - Sloping Grid
Cross - Cross Grid

163

C
h

ap
ter 5

Objective (Flag)
Flag1
Dot
Destroy
Start
End
Warning
Join
PickUp
Unknown
Marker

Arrow
Empty
Select
Vehicle
Defend
Move
Attack
Headquarters
Depot
Camp
Town

SalvageVehicle
RepairVehicle
SupplyVehicle
DestroyedVehicle
MaintenanceTeam
CommandTeam
SupplyTeam
InfantryTeam
LightTeam
HeavyTeam
AirTeam
FireMission

SetMarkerColor
The color of the marker will be defined by using this syntax. The markers will always be
displayed in red by default. If one wants to keep that color, this syntax is not needed.

"M1" setMarkerColor "ColorBlue"

The following colors can be selected

"ColorRed" "ColorGreen" "ColorBlue"
"ColorRedAlpha" "ColorGreenAlpha" "ColorYellow"
"ColorBlack" "ColorWhite" "Default"

SetMarkerSize
The size of the marker can be defined by this Syntax. This one needs to be defined as
follows:

"M1" setMarkerSize [100, 200]

SetMarkerDir
The direction of the marker will be defined by using this Syntax. The definition has to be
made in degrees (1-360).

"M1" setMarkerDir 90

Delete Marker
If a marker has to be deleted later in the mission, just use this already known command::

deleteMarker "M1"

Create a local marker
The creation and definition of the local marker works as same as for the global one, but
the only difference is that this definition is related to the global markers only. The
commands are always the same but only the expansion Local.

I will nevertheless show the collection of the locally related commands:

CreateMarkerLocal SetMarkerTypeLocal SetMarkerColorLocal
SetMarkerSizeLocal SetMarkerShapeLocal SetMarkerBrushLocal
SetMarkerTextLocal SetMarkerDirLocal SetMarkerPosLocal
DeleteMarkerLocal

Further and important information can be found in the Chapter 1.7 - Adding Markers.

164

This subchapter will explain a few further things about vehicles. It’s possible to become
lots of different information which can be used or just called. That’s why this really
important conclusion is written here again.

Ask for or allocate a damage
It´s possible to become a vehicle directly damaged, or check whether a vehicle is
damaged within a trigger area. It's also possible to check whether the vehicle is generally
still able to drive.

? getDammage Vehicle1 > 0.5 - If damage is bigger than 05., then…
?!(canMove Vehicle1) - If vehicle is no more able to drive, then...
? !(alive Vehicle1) - If vehicle is nor more alive, then...

Vehicle1 setDamage 0.5 - Set a damage of 0.5
{_x setDamage 1} forEach crew Vehicle1 - Whole crew gets damaged

The first three syntaxes can be entered as usual within the condition line of a checking
trigger. Please remove the question mark right there, but leave the question mark while
using this syntax within a script.

Unit in vehicle
By using this syntax, one can check whether a special unit is still inside a vehicle:

Name in Vehicle
Player in (crew Vehicle)

Typ des Vehikels abfragen
Some things shall get caused so far a certain unit is entering a vehicle. To do this just use
the following syntax and enter the class-name of the respective vehicle between the quotes.

typeOf vehicle Player == "M1030"

typeOf vehicle Name == "AH1W"

Become vehicles locked for certain units
One can check the type of a unit by using the command TypeOf and also lock a certain
type of unit out of a vehicle. That’s necessary to make sure that just the unitType Pilot is
able to fly an aircraft. It's possible realize this either by using a script or a checking trigger.

Checking trigger

Activation: Repeatedly
Axis a/b: 0
Condition: typeOf driver Vehicle1 != "SoldierWPilot"
onActivation: Driver Vehicle1 action ["Eject",Vehicle1]

If another player equipped with a different unit type will enter the vehicle, The trigger
will execute causing the unit to be ejected from the vehicle.

165

C
h

ap
ter 5

5.71 - All about vehicles

Lock vehicle for certain Name
If a certain unit or the player shouldn't have access to a special vehicle or even a special
vehicle position (i.e. Gunner), one can do this by using the following syntax. In this case
a Checking Trigger and a script example are used.

Checking trigger:

Activation: Repeatedly
Axis a/b: 0
Condition: Vehicle Name1 == Vehicle1
on Activation: Name1 action [“Eject”, Vehicle1]

Script Syntaxes:

? vehicle Name1 == Vehicle1 : Name1 action ["Eject",Vehicle1]
? driver Vehicle1 == Name1 : Name1 action ["Eject",Vehicle1]
? gunner Vehicle1 == Name1 : Name1 action ["Eject",Vehicle1]
? commander Vehicle1 == Name1 : Name1 action ["Eject",Vehicle1]

Ask/Set speed of a special vehicle
To use a speed of a vehicle for a condition for something else, just use this syntax:

speed Vehicle1 > 30

And to set the speed of a certain vehicle (Full, Normal, Limited, Auto):

Vehicle1 setSpeedMode "Full"
Vehicle1 forceSpeed 120 - Value as km/h
Vehicle1 limitSpeed 60 - Value as km/h

Driver or Gunner present?
The command isNull will check whether a special position within a vehicle is still empty.

isNull driver Vehicle1 - If driver position is empty, then...

! isNull driver Vehicle1 - If driver position is empty, then...

Vehicle with still running machine
The command isEngineOn is checking whether the engine of a certain vehicle is still
running or not.

isEngineOn Vehicle1 - If machine of Vehicle1 is still running, then...

Fuel Status
The following orders will be used to check the Fuel status of a vehicle:

Fuel Vehicle1 == 0.5 - Is fuel status is as same as value, then...

Vehicle1 setFuel 0.8 - Is setting a fixed fuel status

Vehicle1 setFuelCargo 1 - Is setting fuel status for refuel truck

166

167

C
h

ap
ter 5

It´s possible to create light sources just by using scripts or functions. The following
example will explain how to create a light source at the position of an object. This one will
get started by using the following syntax:

[ObjectName] exec "scripts\light.sqs"

Light.sqs

One has the possibility to adjust the color of the light, so it might be that the most
incredible results will appear. One only would need to change the respective value within
the array. Right when the change has been saved, it will immediately be visible in the
preview. The use of the decimal values becomes the results effective.

_light setLightColor [0, 0, 1] - Defining the light color
_light setLightAmbient [0, 0, 1] - Defining of the environment light
_light setLightBrightness (0.1 / 0.1) - Defining the brightness of the light

Such a light can also be created locally. One would have to use the local create command,
which looks as follows:

_light = "#lightpoint" createVehicleLocal _pos

The following example will create a small dust cloud. This one can be adjusted in the
size just by changing the values. It's also possible to adjust the color and the shape.

[ObjectName] exec "scripts\dust.sqs"

Dust.sqs

_object = _this select 0;

_light = "#lightpoint" createVehicle position _object;
_light setLightColor [0, 0, 8];
_light setLightAmbient [0.9, 0.9, 0.9];
_light setLightBrightness (0.1 / 0.1);
exit;

5.73 - Create Dust

5.72 - Create a light source

_object = _this select 0

_dust = "#particlesource" createVehicle position _object;
_dust setParticleParams [["\Ca\Data\Cl_basic.p3d", 1, 0, 1], "", "Billboard", 1, 0.7, [0, 0, 0],

[0,0,0], 5, 0.2, 0.2, 0.0, [0.8, 1], [[0.7,0.6,0.5,0.25],[0.7,0.6,0.5,0.0]],
[0, 1], 1, 0, "", "", _object];

_dust setParticleRandom [0, [0.5, 1.5, 0], [1, 1, 0], 0, 0, [0, 0, 0, 0], 0, 0];
_dust setParticleCircle [0, [0, 0, 0]];
_dust setDropInterval 0.02;
~2
deleteVehicle _dust
exit;

168

A little example about how to create a column of smoke in Armed Assault®. It should be
clear that this feature is still very expandable, but this small example is much more than
just a good beginning about this feature.

To create smoke or fire, a special command is needed which is called Drop-command. As
one can see in the picture below, those command lines can be very long, because both
of these lines, beginning with drop, are representing actually one single line. It´s not
possible here to write them in one line, otherwise one wouldn’t be able to see anything.
The most different things like color, shape, behavior and speed will be defined within this
array. This example below represents a loop. Each time the script is running through it, a
value of 1 is added to the local value _i. If the local Value _i will reach the predefined value
of 800, the script will end and the smoke disappears.

The values are variable and can be adjusted by the user. The script will be run by using
following syntax.

[ObjectName] exec "scripts\smoke.sqs"

Smoke.sqs

This script is well to be used when a refuel truck or something similar has been destroyed
for example. Here is a checking trigger example:

Checking trigger:

Activation: Once
Axis a/b: 0
Condition: not alive Vehicle1
onActivation: [Vehicle1] exec "scripts\smoke.sqs"

It´s furthermore possible to define the position around the object or the vehicle. To do this
the coordinates (XYZ-values) are to be used again, which are defined within the array.

_position = [0, 0, 0]

_vehicle = _this select 0
_position = [0, 0, 0]
_i = 0

#Loop
_i = _i + 1
drop ["\ca\data\cl_basic", "", "Billboard", 6, 6, _position, [0,0,0], 1, 1, 1.5, 0.02,

[1,30], [[0,0,0,0],[0,0,0,0.7],[0,0,0,0]], [0], 1.2, 1, "", "", _vehicle]
~0.1
? _i == 800 : exit
goto "Loop"

5.74 - Create Smoke

169

C
h

ap
ter 5

The following example shows how to create fire at any given object position. Even here
there is a lot of scope for making modifications. In addition, the internal script values can
be adjusted at any time to suit your requirements. The initial start array offers many free
definition possibilities.

[Objects,60,0] exec "scripts\fire.sqs"

Object refers to the name of the object, the second value refers to the length of time
that the object should burn and the third value determines the height position above the
object that the fire will be placed.

Fire.sqs

Continued on the following page...!

_object=_this select 0;
_time=_this select 1;
_zpos=_this select 2;
_delay=0.15;
_timecheck=0;
_i=0

; The following line represents a line of code that is not possible here:
_light = "#lightpoint" createVehicle [(getPos _object select 0),

(getPos _object select 1),_zpos];
_light setLightBrightness 0.03;
_light setLightAmbient[0.03, 0.028, 0.0];
_light setLightColor[1.0, 0.9, 0.0];

#Loop
_pos=getPos _object
_x=(_pos select 0)
_y=(_pos select 1)
_z=(_pos select 2)
_vx=0.2-(random 0.4)
_vy=0.2-(random 0.4)
_vz=random 0.15
_m=(2.1-(random 0.1))
_Fire=[2,6] select (random 1.5)

; The following line represents a line of code that is not possible here:
drop [["\ca\data\ParticleEffects\FireAndSmokeAnim\FireAnim",8,_Fire,32],

"", "Billboard", 9, (0.7+(random 0.3)), [_x,_y,_z+_zpos+(random 1)],
[_vx,_vy,_vz], 0, _m, 2, 1, [0.5,1,2],[[1,1,1,0.5],[1,1,1,1],[1,1,1,0]],[0],
0,0,"","",logic]

5.75 - Creating Fire

170

This script contains, among other things, a light source, a fire-drop command and
additionally a smoke-drop command, combining together the Sub-Chapters 5.73, 5.74
and 5.75 into one action. The drop-commands have to be naturally in a line of code!

The following picture shows an engine on fire:

? _i<=3: goto "Loop2"
_Smoke=3;
_s=(2.2-(random 0.1));

; The following line represents a line of code that is not possible here:
drop [["\ca\data\ParticleEffects\FireAndSmokeAnim\SmokeAnim",8,

_Smoke,32], "", "Billboard", 9, (2.5+(random 0.5)), [_x,_y,_z],
[_vx,_vy,_vz], 0, _s, 2, 2, [0.2,5],[[0,0,0,0],[1,1,1,0.8],[1,1,1,0]],[0],
0,0,"","",logic]; _i=0;

#Loop2
~_delay
_i=_i+1

_timecheck=_timecheck+_delay
? _time>=_timecheck: goto "Loop"
deleteVehicle _light
exit

171

C
h

ap
ter 5

It’s possible to become a soldier ranked up while the Mission is running. That means that
the user has the possibility to rank the unit up or even degrade for good or bad
achievements.

So following Ranks are possible to use:

Private
Corporal
Sergeant

Lieutenant
Captain

Major
Colonel

These ranks can be assigned by using the following syntax:

Name1 setRank "Major" or Player setRank "Major"

Example of usage
The player should be promoted if a certain amount of points have been exceeded that’s
possible to become true on several ways. The variant with using a checking Trigger shall
serve as example here

Checking Trigger:

Activation: Einfach
Axis a/b: 0/0
Condition: Rating Player >= Value
onActivation: Player setRank "Major";

hint format ["You’ve just been ranked up to %1!",rank Player]

The Player will be ranked up now.

As Condition
The rank of a unit can now be used as a condition for something else. For example, when
assigning weapons or the use of vehicles. At first the use of vehicles or certain types of
weapons could be disabled for a player. Due to the fact that a strong performance is
rewarded accordingly, the player will make more of an effort and try to collect points to
achieve promotion as quickly as possible.

? rank player == "Major" : exit

? rank Name1 != "Major" : exit

5.76 - Assigning ranks

172

This possibility is not quite useful for a mission but a nice feature for Camera sequences.
But before the unit will use its binoculars so it has to be assigned at first. One can do this
by using following syntax:

Name1 addWeapon "Binocular";

Once the Unit has been equipped with the binoculars, the unit has to make use of the binoculars.
The best way to realize this is the SelectWeapon-command. It’s only needed now to order the
unit to use its Binoculars by using a script or a trigger. To do this just use following Syntax.

Name1 selectWeapon "Binocular"; Name1 setBehaviour "safe";

Of course it is also possible to implement this with an animation command, as described
thoroughly in Chapter 5.56.

It is possible to assign a unit to a vehicle seat. However, after the assignation the unit will
not automatically sit in the seat. So what is the point of this setting? It allows the unit to
be positioned next to the vehicle and then, at the sound of an alarm for example, to be
given an order to get into the vehicle. This is more akin to a real-life situation as no soldier
would sit constantly in the firing position if there’s not yet a reason to do so. In this way
MG’s and searchlights too could also be unoccupied in the first instance and then at the
sound of an alarm the units would storm to their assigned vehicles. Additionally, the
player also has the possibility to switch off the occupying of troops of a tank before it’s
been entered. To do this the following commands has to be used:

Name assignAsCargo Truck1 - Assigns a unit to a passenger seat

Name assignAsDriver Tank1 - Assigns a unit to the driver seat

Name assignAsGunner Tank1 - Assigns a unit to the gunner position

Name assignAsCommander Tank1 - Assigns a unit to the commander seat

Use unAssignVehicleName to remove a unit of a vehicle again. The unit now knows that
the unassigned vehicle no longer belongs to it and won’t automatically get back into the
vehicle after receiving the command to get out of the vehicle

After a unit has been assigned to a vehicle, it can be given the command to get in by
using the following syntax:

[Name] orderGetIn true - Unit is getting in

[Name] orderGetIn false - Unit is getting out again

If several units have to be getting in a vehicle, just add their names right into the
respective Field of the Syntax, like this:

[Name1, Name2, Name3] orderGetIn true

5.78 - Assigning a unit to a vehicle seat

5.77 - Unit using Binoculars

173

C
h

ap
ter 5

One has the further possibility to get the vehicle displayed which was assigned to the
unit or which place it has recieved inside the car. Especially a player can use more or all
positions of a vehicle. That fact can be used as condition for somethings else as you can
see in Chapter 5.71.

Displaying allocated Vehicle:

hint format ["Allocated vehicle: %1", assignedVehicle Player]

Displaying current Position inside the Vehicle:

hint format ["Position in vehicle: %1", assignedVehicleRole Player]

If the Player has to control a Group leader so he has the Possibility to divide its Group
members in several smaller Teams. These ones would receive different colours then to
differ them from each other. So one can allocate a single Unit to an already existing Team:

Name assignTeam "BLUE"

To un-divide a Unit and Team again just use:

unassignTeam Name

To delete the whole Team again just use following Syntax

dissolveTeam "BLUE"

Following Team colours are to be used:

MAIN RED GREEN BLUE YELLOW

Later in the Editor/Mission the result will be loo like this:

No Team Blue and red Team Blue, red and Green Team

5.79 - Allocate a unit to a team

By using following Syntax one can enable a Unit to give out a command which will be
executed even by herself or by another unit. The Example below explains some
possibilities. In following examples you will see some possibilities of this commands.

Name1 ccoommmmaannddFFiirree Name2 - Name1 is firing on Name2

Name1 ccoommmmaannddTTaarrggeett Name2 - Name1 gets Name2 as target

Name1 ccoommmmaannddMMoovvee Name2 - Name1 moves to Name2

Name1 ccoommmmaannddSSttoopp Name2 - Name1 keeps standing

It´s also possible to do this with using Groups. And at this point the sense of the whole
command comes out much more. If the Leader of a Group is giving out a command, so
this one will be spoken out listenable and the group members are all executing this
command.

(units group Name1) commandFire Name2

It´s basically possible to request the damage of any unit or any Object for using them i.e.
as condition for somethings else. Their different possibilities available to become it
realized. I.e. whether a unit is still able to walk/run or to shoot. The following commands
can be used.

canStand - canMove - canFire - handsHit - getDammage

Following a few syntax examples used in a script:

?! (canStand Name) : Name sideChat "Aah... my legs!"

?! (canMove Name) : Name sideChat "My car gas been damaged!"

?! (canFire Name) : hint "Name can´t fire!"

? (handsHit Name == 1) : Name sideChat "Aah... my hands!"

? (getDammage Player) > 0.5 : hint "You are hurt!"

Bedenke:
Never use a questionmark (?) in the conditionline of a trigger, cause its already intigrated.
So following a small trigger example:

Axis a/b: 0
Condition: (handsHit Name == 1)
on Activation: Name sideChat "Aah... my hands!"

174

5.80 - Unit is giving out a command

5.81 - Has a unit recieved damage?

175

C
h

ap
ter 5

Even the Air traffic has its System and its order. So there are some things as well, where
one has to take care about. At first it’s possible to keep in mind that the Start Airfield is
always the Home Airfield. An aircraft would always get the value of its Home Airport
allocated automatically. But if the mission begins in the air so the aircraft will get the very
next Airfield allocated.

So every single Airfield has its own value which can get allocated to any aircraft. The List
below shows the current Airfields and their Parameters:

0 - Paraiso
1 - Rahmadi
2 - Pita
3 - Antigua

If one wants to allocate an Airfield to the Aircraft, so just use this Syntax:

Plane1 assignToAirport 1

It’s also possible now to allow the Aircraft to land on one of the other Airfields.

Plane1 landAt 1

Once all important aircraft have been given, that each Airport has a fixed index and all
Aircrafts can receive other Airports to land, there’s actually only one thing still missing, The
respective Side.

The Side of each Airport can be given by using this Syntax:

0 setAirportSide WEST

WEST  EAST  GUER  CIV  LOGIC

5.82 - The air traffic

It’s quite simple to decrease or even to remove the grass on ArmA´s Islands. It’s a very
useful possibility to become a grass free landscape like Operation Flashpoint®. The results
of decreasing or removing the grass are different. Either one wants to save the users
performance in Multiplayer Games or while crating a camera sequence or whatever.

The syntax will be
setTerrainGrid 12.5

There’re fixed values given. If one defines another, not really existing value, so the engine
will select the next available value, automatically. The values are predefined on a quite
unusual way. So smaller the value so higher the grass:

50 - No Grass
25 - Less Grass
12.5 - Middle Grass
6.25 - Default Grass
3.125 - High Grass details

By using following Syntax it’s possible to place Objects on a sloped way on the map. That’s
a very unusual but sometimes necessary way to place units. This may be for special
camera sequences for example where a Tank is lying on its side or even on its head. It
works for all objects and vehicles of any kind, aircrafts, objects or whatever. All values
between –1 and 1 will work.

Following Syntax’s have to be used:

Object setVectorUp [0,0,0]

Object setVectorDir [0,0,0]

It’s also possible to combine both variants:

Object setVectorDirAndUp [[0,0,0],[0,0,0]]

The order of coordinates is not XYZ but YZY!

Object setVectorUp [x,z,y]

176

5.83 - Decrease grass details

5.84 - Place sloped Objects

Some original ArmA® Missions are using this system. That means, one can only play one
of these missions once he has absolved his training for example or has successfully
finished other missions.

That wouldn’t make any sense for only one released mission. But if one has a combination
of several Missions so it makes sense again. May be he wants to keep the order of playing
the missions.

The needed keys need to be defined in the description.ext. The following rules are to be followed:

keys[] = {"Key1", "Key2", "Key3"}; - The keys have to be defined right here

keysLimit = 2; - Minimum number of needed keys to unlock
the mission again

doneKeys[] = {"Key4"}; - Name of the key which has to be checked in
the mission plan of the SP Mission

If the mission was finished successful so the following key needs to be entered:

activateKey "Key1"

One can find more Information in Chapter 11.2 - The ArmA Cheats.

If the user is placing an AI used searchlight on the map, this lamp will be switched on
automatically at night. But if the position behind the searchlight is empty so there’s no
way to activate the Light. If one wants to light up this Lamp even when there’s no unit
behind, a game logic is needed.

To do this so an empty named searchlight (may be Light1) has to be placed on the map
before. The Game Logic has to be placed on the map as well. Now enter following Syntax
into the init line of the Game Logic::

this moveInGunner Light1

So the Game logic has turned to the AI Position of the searchlight. But the disadvantage
is the Game Logic will not move the searchlight. But by using the script example from
Chapter 6.14 it’s possible to make it move again.

The same is working with vehicles. If one wants to place an empty vehicle on the map,
with nevertheless switched on lights, so one can handle this with a Gamelogic again!

177

5.85 - Lock or unlock missions

5.86 - Empty searchlight with light

Chapter 6
- Mission Specials -

After you read the first 5 chapters, hopefully quite attentively, you’ll get some more
information and specials for your mission. These can be realized with a little exertion
quickly and easily. Your mission will be much more interesting and exciting by utilizing
some of these specials. All features of this chapter have been built basically on scripts,
but that will not make them less functional, they work as well as functions would.

Because all of the examples are extensive, and retyping them could create errors in the
scripts, you can download the scripts with additional example missions from the forums
at www.forum.german-gamers-club.de or www.mapfact.net, which I’ve uploaded
there. .

6.1 The paratroopers 179
6.2 The GPS-System 180
6.3 The action menue entry 181
6.4 The backpack 181
6.5 Random positions 185
6.6 The mapclick 187
6.7 The artillery 189
6.8 Deleting killed units and vehicles 194
6.9 Suppressing gaming speed constantly 195
6.10 The bullet mode 196
6.11 Track down enemy units 197
6.12 The air strike 198
6.13 The air vehicle creator 201
6.14 The searchlight 203
6.15 The time counter 204
6.16 The house patrol script 205
6.17 The mine script 208
6.18 The vehicle transport script 209
6.19 The seagull script 213
6.20 The insect script 215
6.21 The saboteur 216
6.22 The spotter 217
6.23 Unit is capitulating itself 218
6.24 The teleport 221
6.25 The persecution script 222

178

Paratroopers are always a nice feature in missions, so I will explain one of several variants here.

The Helicopter
In this example we place a helicopter named Heli1 on the map. If the user doesn’t want
the helicopter to take off right when the mission begins, just set the fuel status down to
empty by using the command this setFuel 0. When the helicopter has to take off later in
the mission, just set the fuel status back to 1 by using the command this setFuel 1. At the
time we have a disadvantage here, because the helicopter crew will exit the chopper. We
have to hope that one of the following patches will fix that problem.

The altitude
The altitude should be set up to 80 or 100 metres or your troopers will get hurt and probably
die. To avoid this just use the following syntax in the respective waypoint of the chopper:

Heli1 flyInHeight 120

The landing zone
The landing zone should be selected far way from villages or forests to offer a good
landing zone for the soldiers. If the soldiers land directly in forests or villages they could
get hurt as well.

The group
To start a mission with the group already sitting in the helicopter, just enter following
syntax in the init line of the group leader. The group leader was named, Group1.

{_x moveincargo Heli1} foreach units Group1

The script
The script can be freely named by the user, so it looks as follows.

Now the user has the possibility to run the script with a waypoint, a trigger or even a
script, by using the Syntax this exec "Scripts\Heli.sqs". Another possibility without using
your own scripts, is to use scripts which exist in the game already. To run this script just
use the following syntax:

[GroupName,HeliName] exec "Para.sqs"

179

_aunits = units Group1;
_i = 0;
_j = count _aunits;

#Here
(_aunits select _i) action ["EJECT", Heli1] ;
unAssignVehicle (_aunits select _i) ;
_i=_i+1;
~1
?_j>_i : goto "Here"
exit;

C
h

ap
ter

6

6.1 - The paratroopers

This system is quite useful if someone wants to allocate tactical signs to several units on
the battlefield or display the location himself or of another unit.

To enable this, a script has to be used which needs to be defined in the Init.sqs or the init
line of the player unit. That’ll make the script run right when the mission begins. This
script doesn’t only place a marker on the position of the unit, it will check whether the
respective unit is still alive or not. If the unit dies the marker gets deleted automatically.

Example 1:

Example 2:
This one can be realized by using the If-Then-Else-Syntax. Actually the following syntax
needs to be written in one line, but because this book is not wide enough it will be shown
in several lines. The following script is not as long as the one above, so one can enter
everything in one command line.

Explanation:
(If) Soldier1 is still alive (Then) set S1-Symbol on Soldier1 or (Else) delete S1-Symbol
and exit script (Exit).

Note:
A further beloved GPS-variant, which will not be explained here, is to create the marker
for the respective unit with a script and paste it onto that one. But he who will work
carefully through the guide, will be able to create those kinds of scripts by himself.

180

"S1-Symbol" setMarkerText Name Soldier1;

#START
; Checking whether Sold 1 is still alive, if not script will go to the Label END
? (!(alive Soldier1)) : goto "END";
; Set Marker

#MARKER
"S1-Symbol" setMarkerPos getPos Soldier1;
~1
; Script jumps back to Label Start
goto "START";

#END
deleteMarker "S1-Symbol";
exit;

#Start
If(alive Soldier1)Then{"S1-Symbol" setMarkerPos getpos Soldier1}
Else{"S1-Symbol" setMarkerType "Empty";exit};
goto “Start” ;

6.2 - The GPS-System

The action menu is the one which is located in the right corner at the bottom of the
screen. It's possible to add new entries or even delete them later if they are no longer
needed. One can add another entry by using following syntax:

ID = Player addAction ["Entry", "Script.sqs", false, -1, false, false, "false"];

To delete an entry use this Syntax:

Player removeAction ID

If one wants to delete an entry, the respective name has to be used which has been
defined with ID. If one wants to get an entry while a unit is sitting in a vehicle, the vehicle
name has to be defined as well:

ID = Vehicle addAction ID = ["Entry", "Script.sqs", false, -1, false, false, "false"];

Trigger example:
A trigger needs be placed on the map first, then it has to be connected with the player
character, so that only this unit can execute the trigger. The following settings are needed:

Activation: Repeatedly
Axis a/b: 5
On Activation: ID = Player addAction ["Entry", "Script.sqs", false, -1, false, false, "false"];
On Deactivation: Player removeAction ID

One can test this trigger now by running in and out of that area. The result should be that
the entry will appear and disappear again when leaving the area.

The short Version of the action menu Syntax was earlier used in OFP only. The longer one
will now be used in ArmA® although the smaller one still works well, but less efficient. So the
Syntax is explained as follows. Note that nearly everything but priority and hot keys can be
adjusted just by using true or false.

["Entry", "Script.sqs" , Arguments ,Priority, Display, Hiding, "Hotkeys"];

By using the action menu entries it’s furthermore possible to simulate a backpack, trouser
pockets or similar stuff. The following part will introduce the backpack feature which
explains the possibilities by using those entries. The example is currently working fine for
single player missions only.

The player character has to be placed on the map.The following syntax is needed in the initline:

RID = Player addAction ["Open Backpack", "backpack\backpack.sqs"]

Now one has to create a sub-folder called Backpack into the missions folder. Please make
sure that all files in the missions folder, are written with small letters!

Now put all the scripts, which are needed for all the different actions, into the backpack
folder. The following example displays four different scripts.

backpack.sqs firstaid.sqs
save.sqs close.sqs

181

C
h

ap
ter

6

6.3 - The action menue entry

6.4 - The backpack

Backpack.sqs
In the first step, the entry - Open Backpack - will be removed. The other entries will be
added in the next step. The special thing here is that the first aid pack can only be used
three more times. To make sure that the correct entry will appear every time a first aid kit
was used, a variable will be set to true each time. The game remembers the last time the
script was called. If the player has already used the first aid kit 3 times (see: ?
Bandage3:goto "close"), the label bandage3 is set set to true. That makes the script go
on to the label #Close and ends the script by executing the script close.sqs.

A further exception for this script are the sounds which have been given for each respective
action. See: playSound "OpenBackpack". Those sounds are not quite important, but if
one wants to use them anyway, they need to be defined in the Description.ext.

To make it more realistic, it's possible to add a second feature which would allocate a
special animation to the player character. The next script, called FirstAid.sqs shall serve
as example in this case. The character will kneel on the ground while healing himself.

Attention! Those four scripts are all encapsulated with each other! The old version of the
Action menu was used here and can be exchanged by the new one which has been
presented in Chapter 6.3.

182

; Entry will be removed
Player removeAction RID
playSound "OpenBackpack"

; Entrys will be added
RIID = Player addAction ["- Save", "backpack\save.sqs"];

#Bandage
? verband3 : goto "Close";
? verband2 : goto "Bandage3";
? verband1 : goto "Bandage2";

#Bandage1
RIIID = Player addAction ["- First aid (3)", "backpack\firstaid.sqs"];
goto"Close";

#Bandage2
RIIID = Player addAction ["- First aid (2)", "backpack\firstaid.sqs"];
goto"Close";

#Bandage3
RIIID = Player addAction ["- First aid (1)", "backpack\firstaid.sqs"];

#Close
RIIIID = Player addAction ["- Close Backpack", "backpack\close.sqs"];
exit;

Firstaid.sqs
One can see here that the script is checking if, and how often, the mission has been saved.
If one would save the mission the first time, no variable was set to true. The script would
go to the next label called #Bandage1, then it would set the respective variable
#Bandage1 on true and go to the next label called #Heal where all sub-entries would be
deleted again. The player would receive the entry - Open Backpack - again in his action
menu and is now able to heal someone else.

If the game would be saved for the second time, the script would go to the label
#Bandage2 because the label #Bandage1 has already been set to true. If the game is
saved for the third time, the script would jump from the second script line to the label
called #Bandage3. Now #Bandage3 has been set to true as well, and the script would
go to exit and end the script if gets executed again (?bandage3 : exit).

183

C
h

ap
ter

6

? bandage3 : exit;
? bandage2 : goto "Bandage3";
? bandage1 : goto "Bandage2";

#Bandage1
bandage1=true;
goto "Heal";

#Bandage2
bandage2=true;
goto "Heal";

#Bandage3
bandage3=true;
goto "Heal";

#Heal
RID = Player addAction ["Open Backpack", "backpack\backpack.sqs"];
Player removeAction RIID;
Player removeAction RIIID;
Player removeAction RIIIID;
~0.2
Player playMove "AinvPknlMstpSlayWrflDnon_healed";
~1
Playsound "Sanipack";
~2
Player switchmove "AinvPknlMstpSlayWrflDnon_healed";
~5
Playsound "Pain";
~1
Player setDammage 0;
exit;

Save.sqs
The Save.sqs will save the current game. All entries will be deleted, that’s because the
script is running the Close.sqs from here. The current game status can be saved now.

Close.sqs
And the last file of course, which is needed if one is using the entry - Close Backpack -.

And now a short description of the given entry-names and the backpack is ready to be
filled up with its contents.

Name: RID
The name which is required to open the backpack.

RID = Player addAction ["Open Backpack", "backpack\backpack.sqs"]

Name: RIID
The name which is used for saving the game.

RIID = Player addAction ["- Save", "backpack\save.sqs"]

Name: RIIID
Was defined for all first aid entries, because only one is active.

RIIID = Player addAction ["- First aid (1)", "backpack\firstaid.sqs"]
RIIID = Player addAction ["- First aid (2)", "backpack\firstaid.sqs"]
RIIID = Player addAction ["- First aid (3)", "backpack\firstaid.sqs"]

Name: RIIIID
The name which has been defined for closing the backpack.

RIIIID = Player addAction ["- Close Backpack", "backpack\close.sqs"]

184

[] exec " backpack\close.sqs";
Savegame;
exit;

Playsound "Rucksackzu";
Player RemoveAction RIID;
Player RemoveAction RIIID;
Player RemoveAction RIIIID;
RID = Player AddAction ["Open Backpack","backpack\rucksack.sqs"];
exit;

A mission which has almost the same storyline, might become boring quite soon and the
player may put it away or delete it. But if someone has created a mission which is full of
surprises, and enemy units are always attacking from different directions, there’s much
more tension in the mission and the chance to get played several times is much higher.
It isn’t a very fun way of playing Multiplayer missions if one will always have the
information of where the enemy will come from and which location has to be destroyed.
It also would be a better way of playing if the player character will get spawned at
different places and the target locations will change as well each time playing the mission.

The editor offers the user the radius of placement for each single unit. That alone makes
the mission more dynamic. But this option is actually meant for static objects only, which
have been defined before. The following script will be defined either in the init line of a
unit or in the init.sqs. It defines the starting positions when the mission begins.

Example: Dynamic start-points
The random command would get used here. The respective script can look like the
example below:

One wouldn’t need to investigate the respective XYZ-Position for every single place, one
only has to place several Heli-H onto the map and name them. At this point it’s possible
again to use the Radius Of Placement to enable a higher dynamic to the mission.

The user now has a dynamic spawn point and he doesn’t know at what position he’ll get
spawned next time (P1,P2,P3). Because of the Heli-H radius definition, it’s no longer
possible to define the places where the targets will be spawned.

185

C
h

ap
ter

6

_Start = random 3;

? _Start < 1 : goto "P1";
? _Start < 2 : goto "P2";
? _Start < 3 : goto "P3";

#P1
Player setPos [x,y,z];
exit;

#P2
Player setPos [x,y,z];
exit;

#P3
Player setPos getPos HP1;
exit;

A random value of 3 has been used here. When the script
starts to run, a value will be created and will also be
checked to see how much it is. Then the script is going to
the next step.

The script would go to #P1 if the value is smaller then 1

The script would go to #P2 if the value is smaller then 2

The script would go to #P3 if the value is smaller then 3

One can define the positions behind the respective label
now, for example #P1.

An XYZ-position has been defined for #P1 and #P2 while
the player will be set onto an invisible Heli-H at #P3 which
is named HP1.

6.5 - Random positions

Example: Using Start points with coordinates
The following example explains the way how to define an XYZ-position, which also uses
an additional variable radius of placement (_radius = 500).

The order of definitions has to be done as follows. The position _pos will be defined at first
by using [0,0,0], then the radius has to be defined next, the random value 3 will be
defined for _start. The script is checking how much the value is and will jump to its
respective position. The mark _pos will get one of the three XYZ-values allocated
(_pos=[X,Y,Z]), which has to been chosen and defined before.

Now _pos has a fixed XYZ-position and will get an additional radius allocated around this
position (_radius=500). Now this radius will be the area where the player character will
be spawned each time when a mission begins.

One can imagine it on a map. The green markers are the possible starting positions for the
unit or the player.

186

_pos = [0,0,0] ;
_radius = 500;
_start = random 3;

? _start < 1 : _pos = [X,Y,Z];
? _start < 2 : _pos = [X,Y,Z];
? _start < 3 : _pos = [X,Y,Z];

;This array actually has to be defined in one single line, but this is not possible here:
_pos = [(_pos select 0) + _radius/2 - random _radius, (_pos select 1) + _radius/2

- random _radius, _pos select 2];

Player setPos _pos;
exit;

The mapclick function offers a lot of new possibilities to the user, as one can see in the
subsection "The Artillery" in this chapter. But the artillery script is only one of many
possibilities using the mapclick. The following example is explaining the controlling of
groups, calling an air-strike, controlling of supply movements and lots more things. This
example is to be used for single player missions only.

The following example will explain how to control an AI-group named Alpha1 on the
map, by using the radio menu. The target position has to be defined by mapclick first,
and a marker named AMoveP will appear right on this position. At the same time the
leader of the unit will get the order to move to position AmoveP, and agrees with an
added "Roger" sound which has to be defined in the Description.ext.

This group can now be marked and tracked on the map by using the GPS System, which
is explained in Chapter 6.2 - The GPS-System. The tracked marker shall disappear again
at position AMoveP and shall appear again only by using the next mapclick. To do this
there will be defined a “waiting position”for the marker at position [0,0] which is defined
in the end of the script.

Group Alpha 1:
Name: Alpha1
Initline: Alpha1=group this
Size of the Group: Random

Radio trigger:
Activation: Radio Alpha

Repeatedly
Axis a/b: 0
Text: 0-0-1 Alpha 1
On Activation [] exec “scripts\alpha.sqs"

Marker:
Name: AmoveP
Text: Alpha 1 Movepoint
Symbol: Dot
Axis a/b: 1

187

C
h

ap
ter

6

6.6 - The mapclick

Alpha.sqs
The following things will happen when this script gets executed: The variable alphaclick
will bet set on true and a text line will appear on the screen which asks the player to click
on the map. ArmA® notes the definition at onMapSingleClick and the script will break at
@!alphaclick until the player has clicked on the map so that all commands after
OnMapSingleClick which are defined between the quotes have been executed . In the
next step, the variable alphaclick will get set back on false again.

The screen text will be deleted again and a sound file named "Roger" will be played. The
marker AmoveP will beam to a non visible position after a break of 20 seconds until the
next click will be done by the user.

188

alphaclick=true;
titleText ["Click on the map!","plain down"];

;This array actually has to be defined in one single line, but this is not possible here:
onMapSingleClick "Leader Alpha1 move _pos;

alphaclick=false; ""AMoveP"" setMarkerPos _pos";

@!alphaclick;
onMapSingleClick "";
titleText ["", "plain down"];
~1
playSound "Roger";
~20
"AMoveP" setMarkerPos [0,0] ;
exit;

The artillery is a very special feature in a mission. The player has the possibility to allocate
a target to the artillery by clicking on the map or the AI can call the player for artillery
support against a spotted enemy unit. The special thing about this artillery is that these
guns can really exist on the map, but this feature is actually not important to the artillery
script. If the guns are visible it’s quite interesting to watch them lining up into the fire
direction and firing.

This feature is unfortunately not possible without a little script work, which is luckily not
as difficult to realize as it seems on the first view. First it's needed to adjust some things
in the editor and create a subfolder in the missions folder which is called Artillery (make
sure that it’s written small).

Using with players:
The player should have the possibility to call the artillery by using the radio and allocate
them a target by clicking on the map. While the firing process is running, a marker called
Firepoint has to appear on the map and shall disappear right when the job is done.

Radio trigger:

Activation: Radio Alpha
Repeatedly

Axis a/b: 0
Text: 0-0-1 Artillery
On Activation: [] exec “Artillery\Setfire.sqs"

Marker:

Name: Firepoint
Symbol: Destroy
Axis a/b: 1

Invisible Heli H:

Name: ATarget
Position: Somewhere on the map

The guns:
This example has been defined with 6 guns with the gun type M119 of the BLUEFOR
Side. Those guns have to be set on the map and renamed to:

Names: W1, W2, W3, W4, W5, W6

Another type of gun wouldn’t work with this example! Explanation will follow.

189

C
h

ap
ter

6

6.7 - The artillery

Setfire.sqs
The following script will be executed by using the radio trigger. The variable setfire will
be set on true and a screen text (titleText) appears which asks the player to click on the
map to define the target position. The definition of the mapclick will get started in the
next line of the script and breaks again at the position @!setfire. The script is now waiting
for the player to click on the map.

An invisible marker of the type Heli-H which is named ATarget, will be moved to the
position (_pos) on the map. The variable setfire will be set back on false again which
makes the condition !setfire (not setfire) complete. Now the script can go on.

The marker Firepoint will be moved onto the position of the Heli-H (ATarget) and the
onMapSingleClick will be deactivated again. In the next step the script ari.sqs will be
called. The screen text, which asks the player to click on the map, disappears again.

Ari.sqs
A radio sound will be played after this script is activated through the mapclick script. This
sound has a length of 10 seconds and needs to be defined in the Description.ext first. The
script fire.sqs will get executed after a delay of 10 seconds (~10) by the respective guns
and the ATarget. This example shows only one round.

If one wants to fire more than one round, the part fire including the respective delay
needs to be copied and pasted between the last arty call and exit. The guns will fire again
after a small reloading break.

190

setfire=true;
titletext ["Click on the map to set your firedirection","plain down"];
onMapSingleClick "ATarget setPos _pos;setfire=false";

@!setfire;
"Firepoint" setMarkerPos getPos ATarget;
onMapSingleClick "";
[] exec "Artillerie\Ari.sqs";
titleText ["","plain down"];
~15
"Firepoint" setMarkerPos [0,0] ;
exit;

playsound "Firedirection";
~10
;FIRE
{[_x, ATarget] exec "Artillery\Fire.sqs"} foreach [W1,W2,W3,W4,W5,W6]
exit;

Fire.sqs
The artillery guns are lining up and firing at the position which has been defined by
clicking the map, after this script has been activated in the Ari.sqs (Gun and ATarget
[W1, ATarget]).

The first object of the Array (W1) will be used with the local variable _K and the second
one (ATarget) with the local variable _Z. The local variable _X receives the X-position of
ATarget (_Z) and the local variable _Y is receiving the Y_value from ATarget.

By the order _K doWatch [_X,_Y,5000] the script is telling to W1 (_K) that it has to watch
to ATarget and in height of 5000 metres. After a delay of 5 seconds (~5) both options W1
and _K fire "M119" are getting the order to fire. After a short while the grenades will
impact in the predefined random area _X+((random 80)-40) and _Y = _Y+((random 80)-
40). The random area is variable of course.

With the order _H say "Ari", a sound of an incoming shell will be played. This sound has
to be defined in the Description.ext of course. But this sound will be audible only in a
close area near to the impact point.

191

C
h

ap
ter

6

_K = _this select 0;
_Z = _this select 1;
_X = getPos _Z select 0;
_Y = getPos _Z select 1;
_K doWatch [_X,_Y,5000] ;
_A =_K Ammo "M119";
~5
_K fire "M119";
@ _A > _K Ammo "M119";
~2
_N = nearestObject [_K,"HeatM119"];
_X = _X+((random 80)-40) ;
_Y = _Y+((random 80)-40) ;
_H = "HeliHEmpty" createVehicle [_X,_Y] ;
~1
_H say "Ari";
~1
_N setPos [_X,_Y,0];
"SH_125_HE" createVehicle [_X,_Y,0] ;
deleteVehicle _H;
exit

This example works with the M119 gun only, because it has been defined that way in the
script. If one wants to use a different gun, the gun class (here: M119)and the respective
ammunition (here: HeatM119) has to be defined in the script.

The different classes of the available guns are listed in Chapter 3.2 – The weapon class
names.

Using with enemys:
The player or even friendly units can be attacked by enemy artillery fire in a predefined
trigger area when they’ve been spotted by the enemy. The way to do this is similar to the
one just explained. The only different is that the needed scripts are now to be saved in the
subfolder called enemy Artillery and a setfire.sqs is not needed as well. A marker which
defines the fire zone and a Heli H is not needed.

Variant 1:
One doesn’t have to use eastern Artillery but needs to place a trigger on the map which
contains the following settings:

Trigger:

Activation: WEST
Repeatedly
Detected by East

Axis a/b: 2000 (defines the area)
On Activation: [thisList] exec “EnemyArty/Ari.sqs"

The script called ari.sqs, which is located in the subfolder, needs some changes as
explained on the next page. The fire.sqs remains set up on the M119 gun!

All West units which are detected by east units will get attacked now by Artillery. The fact
that the West guns are firing wouldn’t get recognized by the player.

Variant 2:
If one wants to use special Eastern weapons, one has just to define it as shown below:

Trigger:

Activation: WEST
Repeatedly
Detected by East

Axis a/b: 2000 (defines the area!)
On Activation: [thisList] exec “EnemyArty\Ari.sqs"

192

The guns:
This examples has been defined with 4 guns with the eastern gun type D30. These need
to be placed on the map and renamed as follows:

Names: E1, E2, E3, E4,E5,E6

Ari.sqs
The special feature in this script is the result of the fixed trigger syntax in the trigger which
has defined as follows: [thislist] exec " ". That means that each West unit which has been
spotted by East units will receive the local variable _Target in the script. The effect of this is
that the target coordinates will be given automatically (West units). The respective gun and
_target would execute the fire.sqs script which is located in the subfolder enemy artillery.

Fire.sqs
That script only needs to be set up on the gun type D30. Therefore the class names of
the gun and the respective ammunition (D30 and HeatD30) needs to be allocated as
well. One also could use a tank instead of an artillery gun. Chapter 3.16 explains the way
how to get the weapon and ammunition types called.

193

C
h

ap
ter

6

_Taget = _this select 0;

;FIRE
{[_x,_Target] exec "EnemyArty\Fire.sqs"} foreach [E1,E2,E3,E4,E5,E6]
exit;

_K = _this select 0;
_Z = _this select 1;
_X = getPos _Z select 0;
_Y = getPos _Z select 1;
_K doWatch [_X,_Y,5000];
_A =_K Ammo "D30";
~5
_K fire "D30";
@ _A > _K Ammo "D30";
~3
_N = nearestObject [_K,"HeatD30"];
_X = _X+((random 80)-40);
_Y = _Y+((random 80)-40);
_H = "HeliHEmpty" createVehicle [_X,_Y] ;
_H say "Ari";
~1
_N setPos [_X,_Y,0];
"SH_125_HE" createVehicle [_X,_Y,0];
deleteVehicle _H;
exit;

It’s quite important to save performance while playing multiplayer games, but that is also
necessary for single player missions. The more units that are moving on the map or have
to be displayed by the engine, the slower and more unreliable the mission becomes. This
script deletes killed units in a predefined area and in a predefined time from the map.
This executing syntax [2] exec "bodydelete.sqs" enables one to define the number of
bodies which will not be deleted from the map. One only has to enter a number which is
higher than 2. If the script is executed now, only two bodies will keep lying on the ground.

This script is not referring to any side. Its more up to the way how it was adjusted. The
following example explains a setting for East:

Trigger:

Activation: EAST
Once
Present

Axis a/b: 2000 (Define the area!)
On Activation: [2] exec "scripts\bodydelete.sqs"

If one wants all units, indifferent of which forces they belong to, to be deleted, one simply
has to select everyone out of the Activation menu. If only West units have to be deleted,
select West and so on. One can create a new subfolder in the missions folder called scripts.
This script is located in the subfolder scripts.

The special thing with this script is that the killed units will sink in the ground before they
will disappear completely. That function will work by using a special definition called:

(Gravedigger) action ["hidebody",_P]

To define it, one needs a unit which has to be named Gravedigger. It doesn't matter what
side this unit belongs to. The Gravedigger makes it possible that the killed units will sink
down into the ground before they get deleted. That unit needs to be placed far away
from the battlefield. The best choice would be another island if available, to avoid getting
killed by enemy forces. It’s quite important that the name is exactly as used in the script,
otherwise it won’t work. Vehicles will not sink into the ground, they will get deleted
directly from the map

Using with Soldiers:
This script has been set up on the type class men (_T="men"). It’ll delete only vehicles
which are defined as the respective type class. If one would define ground so all type
classes which belong to this ground will be deleted. All vehicles which belong to the type
class ground will be deleted from the map when they’ve been killed. Because aircraft's
and ships are the only types of vehicles which are not moving on the ground, all destroyed
or killed vehicles/units which belongs to this type will be deleted from the map.

194

6.8 - Deleting killed units and destroyed vehicles

The needed script called "bodydelete.sqs" looks like:

Sometimes it might be necessary to suppress the gaming speed. That’s useful if one
doesn’t want the player to be able to speed up the game. The reason is that some
missions have a special story line which needs to be seen and understood completely.
Another reason is that some missions contain huge numbers of script’s and speeding up
the game could cause errors in the scripts.

One single command isn’t enough to fix that problem in the editor, so a small script would
be the best choice and even the easiest way:

This script should run directly at the start of the mission from the init.sqs or the player
init line. A further possibility is to use the init line of an object. The script will always reset
the time back to 1. Even if the player clicks the increase game speed button, it won't have
any effect on the game speed.

195

C
h

ap
ter

6

? !(local server):exit;

_W=_this select 0;
_L=[]+thislist;
_A=[];
_G=[];
_T="Man";

{ if (_T counttype [_x] == 1) then {_G=_G+[_x]} } foreach _L;

#Again
{ if (not alive _x) then {_A=_A+[_x]} } forEach _G;
_G=_G-_A;
? count _A > _W :_P=_A select 0;_A=_A-[_P] ;
(Gravedigger) action ["Hidebody",_P] ;
~10
deleteVehicle _P;
? count _A == _W and count _G == 0 :exit;
goto "Again"

; Suppressing gaming speed

#Check
? not alive Player : exit;
setAccTime 1.0;
~0.1
goto "Check"

6.9 - Suppressing gaming speed constantly

This section will present a small but fine feature which isn’t actually very realistic but shall
demonstrate the possibilities of ArmA®. The Bullet Mode enables the player to switch to
slow motion while the game is running. That enables one to get some great screenshots.
In this example the Bullet Mode has been added to the Action menu and was realized by
using two scripts. That feature is usable in the single player mission only, and quite
unnecessary in multiplayer missions.

The player needs an Action menu entry first:

ID=Player addAction ["Bullet Mode ON", "Bulleton.sqs"];

This entry is needed to run the bullet Mode . The respective script looks like this:

Bulleton.sqs

The entry Bullet-Mode ON will be removed out of the Action menu and the new entry
Bullet-Mode OFF will be added. The game speed will be displayed in slow-motion now
until the player deactivates the Bullet Mode by clicking Bullet-Mode OFF again. The
following script works as the one above only reversed.

Bulletoff.sqs

It would be a nice feature if one would add a music track which would get played if the
mode has been activated and stopped again and if the mode gets deactivated again.

196

;Entry will be removed
Player removeAction ID;

;Entry will be added
IID = Player addAction ["Bullet-Mode OFF ", "bulletoff.sqs"];

;Slow motion will be set
setAccTime 0.0900;
exit;

;Entry will be removed
Player removeAction IID;

;Entry will be added
ID = Player addAction ["Bullet-Mode ON ", "bulleton.sqs"];

;Slow motion will be revoked
setAccTime 1.0;
exit;

6.10 - The bullet mode

If one wants to add a special feature to get enemy units spotted by friendly AI units to
make them displayed with a blinking marker on the map (maybe to allocate Artillery fire
or send other units to this position), that can be realized as shown in the following
example. This script is executable in MP missions for the game server only. To do this, the
script needs the additional line ?(!(local server)):exit.

The user has to place a marker and a trigger on the map. The trigger will define the
respective area. For that function, adjust the options as follows:

Trigger:

Activation: EAST
Detected by WEST
Repetedly

Axis a/b: 5000
On Activation: thisList exec "scripts\signal.sqs"

Marker:

Name: Target1
Color: Red
Axis a/b: 1
Symbol: Destroy

The needed script looks like the following:

197

C
h

ap
ter

6_Target = _this select 0;
signalcounter = 0;

"Target1" setMarkerPos getPos _ Target;
"Target1" setMarkerType "Destroy";

#Start
? (signalcounter>=10) OR not alive _Target : goto "Ende";
signalcounter = signalcounter+1;
~0.8
"Target1" setMarkerColor "ColorRed";
~0.8
"Target1" setMarkerColor "ColorBlack";
goto "Start"

#Ende
~1
signalcounter = 0;
"Target1" setMarkerType "Empty";
"Target1" setMarkerColor "ColorBlack";
exit;

6.11 - Track down enemy units

Airstrikes are always a tactical advantage. This is why an example will be shown here of
how to create an Airstrike. But note that this version of the script needs to get adjusted
to your own mission. That means that one needs to test the Airstrike in the respective
mission area and adjusts the altitude of the aircraft or the time until the bomb will be
dropped. The hits will become more and more accurate.

The Airstrike isn’t usable in Multiplayer games unfortunately, because the bomb used by
the Harrier would make the game crash. To add the Airstrike into the mission, one needs
to place following objects on the map

Invisible Heli-H:

Empty/Objets: H (invisible)
Name: ASTarget

Radio trigger:

Activation: Radio Alpha
Text: 0-0-1 AIRSTRIKE
Axis a/b: 0
On Activation: [] exec "Airstrike.sqs"

Marker:

Name: Firedirection
Farbe: rot
Symbol: Destroy
Axis a/b: 1

The player has to click on the map when radio Alpha has been activated. AStarget and the
Marker Fire direction will be set right on the position where the player clicked on the map.
The game will generate an Aircraft including Pilot, which is approaching the target. The
pilot will get the bomb drop command when he reaches a predefined distance to the
target and would drop the bomb. The aircraft is flying away out of the players view and
would get deleted only a few seconds later.

198

6.12 - The air strike

Airstrike.sqs
The Logic and the marker are have to be placed somewhere on the border of the map to
make them invisible to the player. Once the job is done the marker and the game logic will
be moved back onto this position. You only need to add this script below and can get
started.

Continued on next page.

199

C
h

ap
ter

6

setfire=true;
titleText ["Click on the map to set your firedirection","plain down"];
onMapSingleClick "ASTarget setPos _pos; setfire=false";

@!setfire;
"Firedirection" setmarkerpos getPos ASTarget;
playSound "Firedirection";
onMapSingleClick "";
titleText ["", "plain down"];

;=========DEFINE=======================
_dropPosition = getpos ASTarget;
~0.5
_dropPosX = _dropPosition select 0;
_dropPosY = _dropPosition select 1;
_dropPosZ = _dropPosition select 2;
~0.1
_planespawnpos = [_dropPosX + 3000, _dropPosY, _dropPosZ + 1000];
_pilotspawnpos = [_dropPosX + 3000, _dropPosY, _dropPosZ + 1000];

;=========CREATE=======================
_PlaneG = creategroup WEST;
_plane = createVehicle ["AV8B",_planespawnpos,[], 0, "FLY"];
_plane setPos [(getPos _plane select 0),(getPos _plane select 1),900] ;
_pilot = "SoldierWPilot" createUnit [getMarkerPos "Firedirection", _PlaneG, "P1=this"];

_Plane setVelocity [100,0,0] ;
~0.4
P1 moveinDriver _plane;
P1 setDamage 0;
P1 action ["gear_up", vehicle P1] ;
_plane flyinHeight 100;
_plane setSpeedMode "full";

#CHECK
P1 doMove getPos ASTarget;
P1 doTarget ASTarget;
P1 doWatch ASTarget;
? (_plane distance ASTarget) < 1500 : goto "DROP"
goto "CHECK"

The accuracy will be better or even worse if the green marked labels #Drop and #Check
will be adjusted, but this is also up to the landscape as in reality.

The pilot will get the order to fly away when he has dropped his bomb. This is needed to
delete the aircraft out of the players view. The sound would stop immediately if the
aircraft was deleted right when the bomb has been dropped, and that would take away
any realism in the mission. A sound file called playSound "Firedirection" has been
started at the beginning of the script. That sound file needs to be defined in the
Description.ext.

200

;=========FIRE=======================

#DROP
_i = 0
_plane flyInHeight 100;
_plane setPos [(getPos _plane select 0),(getPos _plane select 1),100] ;
~13

#FIRE
_i=_i+1
_plane fire "BombLauncher";
~0.2
? _i <= 6 : goto "FIRE"

;=========FLY AWAY=======================

ASTarget setPos [0,0,0];
"Firedirection" setMarkerPos [0,0];
_plane setSpeedMode “Full”
~4
_plane flyInHeight 300;
P1 doMove getPos ASTarget;

#Check2
_plane setDamage 0;
P1 setDamage 0;
? (_plane distance Player) > 2500 : goto "ENDE";
goto "Check2"

;=========DELETE========================

#ENDE;
deleteVehicle _plane;
deleteGroup _PlaneG
deleteVehicle P1;
exit

This script enables one to generate aircraft in any kind and number. To do this one has to
define a start point somewhere on the map. This start point can be an invisible Heli-H.
Then one only needs to allocate a target to the newly generated unit, i.e. another unit or
a further Heli-H.

This array enables the user to define a unit as Leader of a group or just place a unit named
dummy somewhere on the map, ideally far away from the battlefield. This option is very
much needed, because the script is not working without a Team leader. In the case of a
Multiplayer mission don’t name the leader as player. Make sure that the Game Logic
named Server is present!

To run the script and the Array, use following Syntax:

[StartPos, "ParachuteC", "SoldierWB", TargetPos, 100, 0, 0.6,
"Combat", Dummy, 10] exec "aircreate.sqs"

Actually this Syntax needs to be defined in one line, but that is not possible here.

The start position: That is an object on the map named Startpos. The best object
would be an invisible Heli-H which should be placed far away
enough from the Action Point. For fighter, it's recommended
to place the object off-shore.

The vehicle class: The class name of the vehicle which has to be generated will
be defined here. In the example above, it was already defined
with"ParachuteC".

The unit class: The kind of unit which has to fly the aircraft will be defined
here. In the normal way it´ll be a pilot. But because paragliders
are possible as well, other kinds of units can also be used.

The leader: Every unit which will be generated needs a leader. So it's
possible to define any unit on the map. In the current case a
Dummy has been used.

The altitude: The altitude has to be defined here. In our example the Jet
will fly in a hight of 100 meters.

The gunner: Some aircraft are not supported with a gunner position, so
it's possible to disable this one by using the value 0 for “no
gunner“ and 1 for “gunner“.

The skill: The skill of a unit will be defined here. What has been defined
with 0.6, can also be defined randomly. To make it work just
use a random value i.e. random 1.

201

C
h

ap
ter

6

6.13 - The air vehicle creator

The behavior: The behavior of a unit will be defined here. Combat has been given
in the example above.

The target: In this part of the script the target will be defined. In this example
the target, which is located somewhere on the map, will be named
as TargetPos.

The number: Last but not least the number of ground vehicles which have to be
generated is defined here.

Aircreate.sqs

202

?!(local server):exit;

_StartPos = _this select 0;
_Airtyp= _this select 1;
_Pilottyp = _this select 2;
_Target = _this select 3;
_Height = _this select 4;
_Gunner = _this select 5;
_skill = _this select 6;
_behaviour = _this select 7;
_Leader = _this select 8;
_count = _this select 9;
_counter = 0;

#Start
_counter = _counter +1;
_Typ = createVehicle [_Airtyp,[(getPos _StartPos select 0)+ random 200,(getPos
_StartPos select 1)+ random 200,_Height + random 150], [], 0, "FLY"];
_Typ FlyInHeight _Height;
_Typ SetSpeedMode "full";
_Typ setDir getdir _StartPos;
_pilot = _Pilottyp createUnit [[(getPos _StartPos select 0),(getPos _StartPos select 1),

2000], _Leader,"Pilot1=this"];

Pilot1 moveInDriver _Typ;
Pilot1 setSkill _Skill;
Pilot1 doMove getPos _Target;
Pilot1 setBehaviour "_behaviour";

? _gunner == 0 : goto "Next"
_gunner = _Pilottyp createUnit [[(getPos _StartPos select 0),(getPos _StartPos select 1),

2000], _Leader,"Gunner1=this"];
Gunner1 moveInGunner _Typ;
Gunner1 setSkill _Skill;
Gunner1 setBehaviour "_behaviour";

#Next
? _counter >= _count : exit;
~0.5
goto "Start"

The searchlight is a static object which is lighting when it becomes dark, but it’s not
moving around like a real search light. So I created this script. One has the possibility to
define the very left and the very right border in an Array. That means that the unit which
is standing at the search light will move the light until its left defined point in the array and
then to its right defined point in the array. The searchlight is always moving from the first
direction to the other one. Now it's up to the mission creator how far the light may go.

First one has to create the searchlight on the map and give it a name (i.e. Guard1). Then
the array for the syntax needs to be defined.

To run the script the following syntax is needed:

[Name, left value, right value] exec "light.sqs"

[Guard1,100,180] exec "light.sqs"

Those values will be given to the script light.sqs when it has been executed.

Light.sqs

Known Bug
It’s possible that the searchlight wont start moving unless a unit is crossing its location,
that’s due to the system is moving down a lot in ArmA® and Objects which are far away
from the players position might not be visible. To avoid that the searchlight is not moving
just let a patrolling unit crossing its location. Another possibility is to create and delete
again a unit right in front of the searchlight as explained in Chapter 5.45.

203

C
h

ap
ter

6

_unit = _this select 0;
_left = _this select 1;
_right = _this select 2;
_dir = (getDir _Unit);

#Start
? !(alive _unit) : exit;
~0.5
_dir = _dir+1;
_unit setFormDir _dir;
?(_dir > _right) : goto "Next"
goto "Start"

#Next
? !(alive _unit) : exit;
~0.5
_dir = _dir -1;
_unit setFormDir _dir;
?(_dir < _left) : goto "Start";
goto "Next"

6.14 - The searchlight

If one wants to use a time counter, there are several ways possible to realize this. Two
examples will be explained here. First the title text, and second the hint.

The trigger syntax will be defined as follows:

[60] exec "time.sqs"

The 60 means the time which is left until the counter has reached the 0 and will end the game.

Time.sqs
This script is for the title text. This countdown will appear as text at the bottom of the screen.

And the hint variant: The numbers will be visible at the top left screen border.

If one wants a value to count up, there´s a small change needed in the script above. In the
line _time = _time –1 the – right before 1 has to be changed to + and the parameter
(_time >= 1) has to be changed to (_time <= _time). The syntax itself will get started by
using this command:

[0] exec "time.sqs"

204

_time = _this select 0;

#Start
~1
_time = _time -1;
Titletext [format["Noch %1 Sekunden", _time],"plain down"];
if (_time >= 1) then {goto "Start"} else {};

Titletext ["","plain down"];
exit;

_time = _this select 0;

#Start
~1
_time = _time -1;
Hint format["Noch %1 Sekunden", _time];
if (_time >= 1) then {goto "Start"} else {};

Titletext ["","plain down"];
exit;

6.15 - The time counter

#

This script enables one to become units patrolling a building. But I have to say that the
Hotel is the one where it currently makes the most sense to realize. The user has the
possibility to adjust the script as he wants to do cause of the very huge Array. The script
is also made to run perfectly within a Multiplayer game. The script will be executed by
the now following, quite confusing Syntax. A explanation about how to adjust the Array
will follow immediately but at first the executing Syntax with the Array.

[Name, "SAFE", Hotel, 161, 1, 160, 2, 10, 100, 200, 256, 0, 1] exec "housepos.sqs";

205

Description Script Explanation
Name _man Name of the unit
Behavior _behaviour Behaviour of the unit
Building _house Name of the building (see Chapter 5.61).

Place a Logic right on the building and define
Hotel=nearestBuilding this within the init line

Start position _startpos Startposition of the unit within the building
Accident _accident Random positions (1=on / 0=off)

The random position for additional positions in the
building will be activated here. If the value is 0 so the
random position number and the numers of random
positions will be ignored.

Accident
position number

_accidentnr Random position number,
The respective value which should be used to
generate the random position has to be defined
right here. In example the value 160, so a random
position between 0 and 160 will be used now and
assigned as waypoint.

Accident
position count

_accidentcount Number of random positions
how much should such o software getting
generated. 2 runs are defined above.

Pause _rest Break on position (Exampe above: 10)
How long is the unit intended to wait, until she´ll
move to the next one.

Waypoint 1 _wp1 First Waypoint (example above: 100))
Waypoint 2 _wp2 Second waypoint (example above: 200)
End waypoint _ende Endwaypoint (example above: 250)
Static/Dynamic _form Start (Static=0/Dynamic=1) If the value is 0 (as

shown above) so the unit will be placed right on the
defined position of the building.

Repeat _loop Repeat script or end patrol.

C
h

ap
ter

6

6.16 - The house patrol script

It’s possible to define values like break or Start-, waypoint 1, waypoint 2 or end waypoint
with additional random commands to provide much more dynamic to the mission. To do
this just write random right in front of the value within the Array.

This Array needs some concentration while adjusting because there are a bunch a
numbers which are following one by one and one could become confused pretty fast.
Thats why one has to work correct.

HousePos.sqs

The script will go on the next page.

206

?!(Local Server): exit

_man = _this select 0;
_behaviour = _this select 1;
_house = _this select 2;
_startpos = _this select 3;
_accident = _this select 4;
_accidentnr = _this select 5;
_accidentcount = _this select 6;
_rest = _this select 7;
_wp1 = _this select 8;
_wp2 = _this select 9;
_ende = _this select 10;
_form = _this select 11;
_loop = _this select 12;

#LOOP
_counter = 0;
_man setbehaviour _behaviour;

;//Form of employment (Static=0/Dynamic=1)
? _form == 0 : {_x setpos (_house buildingPos _startpos)} foreach units _man;

;//First Waypoint (Enable=Buildingposition;Disable=0)
#WP1
? _wp1 == 0 : goto "WP2"
Leader _man move (_house buildingPos _wp1);

#WP1Dest
~1
? Leader _man distance (_house buildingPos _wp1) > 2 : goto "WP1Dest";
~ _rest

;//Second Waypoint (Enable=Buildingposition;Disable=0)
#WP2
? _wp2 == 0 : goto "AccidentPos";
Leader _man move (_house buildingPos _wp2);

This script can be used now very flexibly. An example:

A user wants some units to patrol some waypoints around a building. Then the script will
be activated on a special waypoint and the units that are patrolling the desired positions
will go back to the building again once all predefined positions were touched. The
parameter dynamic/static needs to be set on 1 (dynamic). The unit would get the order
to move to waypoint 1. Loop needs to get deactivated by setting the value on 0!

It´s basically recommended that a group shouldn't have more than 3 units while patrolling
in a building. But 1-2 units would be much more realistic. It’s possible to make more than
one group patrol the Hotel. The player has to do a lot to escape unharmed when there´re
non patrolling units located there as well.

207

C
h

ap
ter

6

#WP2Dest
~1
? Leader _man distance (_house buildingPos _wp2) > 2 : goto "WP2Dest";
~ _rest

;//Accidenpositions (Enable=1;Disable=0)
#AccidentPos
? _accident == 0 : goto "EndP";

#Accident;
_counter = _counter +1;
_apos = random _accidentnr;
~1
Leader _man move (_house buildingPos _apos);

#APosCheck
~1
? Leader _man distance (_house buildingPos _apos) > 2 : goto "APosCheck"
? _counter >= _accidentcount : goto "EndP"
~ _rest
goto "Accident"

;//End Waypoint (Enable=Buildingposition;Disable=0)
#EndP
? _ende == 0 : goto "Ende"
~ _rest
Leader _man move (_house buildingPos _ende);

#EndPDest
~1
? Leader _man distance (_house buildingPos _ende) > 2 : goto "EndPDest"

;// LOOP (Enable=1;Disable=0)
#Ende
? _loop == 1 : goto "Loop"
exit;

Because the mines in ArmA® are not quite realistic, they need a little more power to do
their job. The solution is a script again. To do this, two different scripts are needed. One
for anti-human mines and one for anti-tank mines. The difference between both scripts
are only the shell classes which are needed for the detonation. At least anti-tank mines are
much more powerful then anti-human mines.

To do this, a mine needs to be set on the map at first. It also needs an additional trigger
which is executing the script and causing the detonation. This one has to be set directly
onto the mine so that a unit who´s entering the trigger area will execute the script and
cause the detonation.

Anti person mine

Trigger:

Activation: SIDE
Once

Axis: 1/1
on Activation: thislist exec "apmine.sqs"

APmine.sqs

The user has a big advantage now. Once one mine has finally been finished, he can just
copy the mine and past it in an endless number on the map. Each mine will work as
expected.

Anti tank mine:
The same can be used for the anti-tank mine, but only the shell class needs to be changed.
One can get the different shell classes from Chapter 3.10. The script itself has to be
named as TankMine.sqs (or any other name). It´s further recommended to size up the
radius of the trigger.

208

?(!(Local Server)): exit;

_Soldier = _this select 0;
_Bomb="SH_125_HE" createVehicle position _Soldier
exit;

6.17 – The mine script

This script enables the game to add an object or a vehicle right under an aircraft to take
it to a predefined position. There´re two ways possible to do this. The first, that 2 objects
(helicopter(Heli) and vehicle(Cargo)) are to be predefined on the map to execute the
VehTrsp script with their names. That makes the Cargo getting transported and debarked
again at the predefined position, by the helicopter. This possibility is unfortunately not
working in multiplayer missions at the time and can be realized in singleplayer missions
only. To execute the script, use following syntax:

[Heli,Cargo, 70, Player, EndPos] exec "vehTrsp.sqs"

The array can be explained as follows:

[Transporter, Cargo, Altitude, DropPosition, EndPosition]

VehTrsp.sqs

209

C
h

ap
ter

6

?!(Local Server): exit

_TranspVeh = _this select 0
_Cargo = _this select 1
_Height = _this select 2
_Place = _this select 3
_EndPos = _this select 4
_TranspVeh domove getpos _Place;
_TranspVeh flyinheight _Height;
;/////////////////////////////TRANSPORT/////////////////////////////////
#Loop
_xPos = (getPos _TranspVeh) select 0
_yPos = (getPos _TranspVeh) select 1
_zPos = (getPos _TranspVeh) select 2
_Cargo setPos [_xPos, _yPos, _zPos -10];
_Cargo setDir (getDir _TranspVeh);
? _TranspVeh distance Player < 100 : goto "Next"
~.01
goto "Loop"
;/////////////////////////////LANDING//////////////////////////////////
#Next
_TranspVeh flyinheight 13;
_TranspVeh setspeedMode "Limited";
_TranspVeh action ["AUTOHOVER", _TranspVeh];
#Loop2
_xPos = (getPos _TranspVeh) select 0
_yPos = (getPos _TranspVeh) select 1
_zPos = (getPos _TranspVeh) select 2
_Cargo setPos [_xPos, _yPos, _zPos -10];
_Cargo setDir (getDir _TranspVeh);

? (getPos _Cargo select 2) < 1.5 : goto "Loop3"
~.01
goto "Loop2"

6.18 – The vehicle transport script

Spawn-Variant
The second way is that both vehicles are getting created on the map right onto a start
point. The helicopter is getting the cargo to its predefined position, dropping the cargo
and flying away to an endpoint where it gets deleted. To create that, all viewable within
the editor, all of it has been realized with 3 invisible Heli-H markers, called:

StartPos Target EndPos

These can be moved on the map now. The special thing is that the helicopter will be
aligned right in to the direction of view of the StartPos Object. So it's possible to turn the
flight direction of the helicopter by turning the StartPos object.

It´s also possible to define the player or any other similar thing as debark position. To do
this just define the parameter Player or Name of the unit instead of Target where the
cargo has to be dropped to.

In this case a Dummy called Leader has been created on the map as leader of the group.
That's why the helicopter may fly and land better then if no leader would be used.

The following Syntax is executing the script:

["UH60MG", "HMMWVMK", "SoldierWPilot", 70,
StartPos, Target, EndPos, Dummy] exec "vehtrspcreate.sqs"

The Array can be explained as follows:

["HeliTyp", "CargoTyp", "Pilottyp", Altitude,
StartPosition, DropPosition, EndPosition, Leader]

210

##Loop3
_xPos = (getPos _TranspVeh) select 0
_yPos = (getPos _TranspVeh) select 1
_zPos = (getPos _TranspVeh) select 2
_Cargo setPos [_xPos, _yPos, _zPos -10];
_Cargo setDir (getDir _TranspVeh);
? speed _TranspVeh < 1 : goto "Ende";
~.01
goto "Loop3"
;/////////////////////////////UNLOADING//////////////////////////////////

#Ende
_Cargo setpos [(getpos _Cargo select 0),(getpos _Cargo select 1),0]
_TranspVeh action ["CANCELACTION", _TranspVeh]
_TranspVeh flyinheight _Height
_TranspVeh domove getpos _EndPos
_TranspVeh setSpeedMode "Normal"
exit

VehTrspCreate.sqs

211

C
h

ap
ter

6

?!(Local Server): exit

_AirVeh = _this select 0
_Vehicle = _this select 1
_Pilottyp = _this select 2
_Height = _this select 3
_StartPos = _this select 4
_Place = _this select 5
_EndPos = _this select 6
_Leader = _this select 7

;/////////////////////////////CREATE////////////////////////////////////
_TranspVeh = createVehicle [_AirVeh,[(getpos _StartPos select 0),(getpos _StartPos

select 1),_Height], [], 0, "FLY"];
_TranspVeh setdir getdir _StartPos
_Cargo = _Vehicle createVehicle getpos _TranspVeh
_pilot = _Pilottyp createUnit [[(getpos _StartPos select 0),(getpos _StartPos select
1),2000], _Leader,"Pilot1=this"]

Pilot1 moveinDriver _TranspVeh
_TranspVeh flyinheight _Height

;/////////////////////////////TRANSPORT/////////////////////////////////
#Loop
Pilot1 domove getpos _Place
_xPos = (getPos _TranspVeh) select 0
_yPos = (getPos _TranspVeh) select 1
_zPos = (getPos _TranspVeh) select 2

_Cargo setPos [_xPos, _yPos, _zPos -10];
_Cargo setDir (getDir _TranspVeh);
? _TranspVeh distance _Place < 90 + random 50 : goto "Next"
~.01
goto "Loop"

;/////////////////////////////LANDING///////////////////////////////////
#Next
_TranspVeh flyinheight 13;
_TranspVeh setSpeedMode "Limited";
_TranspVeh action ["AUTOHOVER", _TranspVeh];

#Loop2
_xPos = (getPos _TranspVeh) select 0
_yPos = (getPos _TranspVeh) select 1
_zPos = (getPos _TranspVeh) select 2

_Cargo setPos [_xPos, _yPos, _zPos -10];
_Cargo setDir (getDir _TranspVeh);

212

? (getPos _Cargo select 2) < 1.5 : goto "Loop3"
~.01
goto "Loop2"

#Loop3
_xPos = (getPos _TranspVeh) select 0
_yPos = (getPos _TranspVeh) select 1
_zPos = (getPos _TranspVeh) select 2

_Cargo setPos [_xPos, _yPos, _zPos -10];
_Cargo setDir (getDir _TranspVeh);
? speed _TranspVeh < 0.7 : goto "Ende";
~.01
goto "Loop3"

;/////////////////////////////UNLOADING//////////////////////////////////
#Ende
_Cargo setpos [(getpos _Cargo select 0),(getpos _Cargo select 1),0]
_TranspVeh action ["CANCELACTION", _TranspVeh]
_TranspVeh flyinheight _Height
_TranspVeh domove getpos _EndPos
_TranspVeh setSpeedMode "Full"

;/////////////////////////////DELETE////////////////////////////////////
@ _TranspVeh distance _EndPos < 100
deleteVehicle _TranspVeh
deleteVehicle Pilot1
exit

213

A swarm of Seagulls adds a lot of atmosphere to a mission. There´s actually already a lot
of stuff in the air, but when it´s possible to create a swarm flying around a predefined
route, it´s much more impressive. All of that has to be realized again by using a script. For
that example 2 objects are needed, ideally invisible Heli H's, which have to be placed on
the map. They also need a name and the target and start parameters needs to be defined
also. Then they can be defined within the execute array of the Script.

[Start,Destination,NumberOfBirds] exec "scripts\bird.sqs"

Bird.sqs

Once the script has been executed, the birds will be created within an random area
around the start position. (defined by: x,y;z). This area can be freely defined at any time
by the user again. Each bird is executing the second script and gets a random destination
allocated where it flies to.

C
h

ap
ter

6

6.19 – The seagull script

_spos = _this select 0
_zpos = _this select 1
_count = _this select 2
_i = 0

#Check
_x = (random 30) + 10
_y = (random 30) + 10
_z = (random 30) + 10

? _i >= _count : exit
_i = _i + 1

_bird="seagull" camcreate [(getpos _spos select 0) - (sin getdir _spos * _x),
(getpos _spos select 1) - (cos getdir _spos * _y), _z]

[_bird,_spos,_zpos] exec "birdpos.sqs"

goto "check"

BirdPos.sqs

This example can expanded with further features and positions of course. It´s also possible
to use bees or similar objects instead seagulls. To get the respective class names, please
go to Chapter 3.9 - The units classes.

Now a few syntax examples will follow:

deletevehicle _bird - The birds will be deleted
_bird camSetPos position Player - The bird flies to the player
_bird camsetpos [x,y,z] - The bird flies to X,Y,Z Position
_bird camCommand "Landed" - The bird is landing

214

_bird = _this select 0
_spos = _this select 1
_zpos = _this select 2
_x = (random 10) + 10
_y = (random 10) + 10
_z = (random 10) + 10

#Loop
_bird camsetpos [(getpos _zpos select 0) - (sin getdir _zpos * _x),

(getpos _zpos select 1) - (cos getdir _zpos * _y), _z]

? _bird distance _zpos <= 30 : goto "Loop2"
~1
goto "Loop"

#Loop2
_bird camsetpos [(getpos _spos select 0) - (sin getdir _spos * _x),

(getpos _spos select 1) - (cos getdir _spos * _y), _z]

? _bird distance _spos <= 30 : goto "Loop"
~1
goto "Loop2"

The insect script is similar to the seagull script. But this one has been created a little
different. In this case flies shall fly right over a dead body. To realize this just paste the
following syntax into the init line of the respective unit.

[this,60] exec "scripts\insect.sqs"

It's also possible to use the name of the unit instead of this. The number 60 represents the
number of Flies which are used to orbit the body It´s further possible to use special sounds
for the flies, which will be heard close around the body.

Insect.sqs

Insectpos.sqs

215

C
h

ap
ter

6

?(!(local server)) : exit
_deadman = _this select 0
_count = _this select 1
_i = 0
@not alive _deadman
#Check
_x = random 1
_y = random 1
_z = random 3

? _i >= _count : exit
_i = _i + 1

_insect="HOUSEFLY" camcreate [(getpos _deadman select 0) + _x,
(getpos _deadman select 1) + _y,_z]

[_deadman,_insect] exec "insectpos.sqs"

goto "check"

_deadman = _this select 0
_insect = _this select 1

#Loop
_insect camsetpos position _deadman
? _insect distance _deadman <= 0.1 : goto "Loop2"
~2
goto "Loop"

#Loop2
_x = (random 3) + 1
_y = (random 3) + 1
_z = (random 3) + 2
_insect camsetpos [(getpos _deadman select 0) + (sin getdir _deadman * _x),
(getpos _deadman select 1) + (cos getdir _deadman * _y), _z]

? _insect distance _deadman >= _x : goto "Loop"
~2
goto "Loop2"

6.20 - The insect script

This section will show how to use a default AI unit as saboteur. The unit will move to the
destination point, dropping the bombs and ignite them from a safe position, resp.
reached its next waypoint.

To explain how it works, a quite simple example. At first the unit needs to own the resp.
bombs, so one can allocate them to the unit by using the syntax

this addMagazine "Pipebomb";

which has to be entered into the init line of the unit. In this example we’re using an East-
Saboteur, which is already equipped with respective Ammunition.

Now we place the unit called Enemy1 onto the map and allocate it the needed waypoints.
Now it's important to know that each waypoint needs to get the following syntax into its
OnActivation line:

Enemy1 fire "pipeBombMuzzle"

The needed syntax to execute the detonation has to be entered into the last waypoint.
When the unit arrives at that waypoint, the pipebombs shall get ignited.

Enemy1 action ["TOUCHOFF", Enemy1];

Example pictures:

It’s possible now of course to pimp that up, maybe with further waypoints, actions and so
on. The way how the waypoints are to be adjusted is always up to the user himself. And
don't forget the behavior settings, because theses are not quite unneeded. Be sure to
adjust the time settings as well (Min, Mid, Max) to add a nice dynamic to the mission.

216

6.21 – The saboteur

217

C
h

ap
ter

6

This example explains how to realize an intelligence unit. One has the possibility to switch
between the units by using the radio menu, to get a small overlook over the current
position. It´s unimportant whether the unit is a soldier, a tank or an aircraft.

The basic commands enable one to switch to the unit by using different views. The
following views are available:

"INTERNAL" - Regular 1st Person view
"EXTERNAL" - 3rd Person view (onto the units back)
"GUNNER" - Optical view (visor)
"GROUP" - View to the Group (leader only)

To switch to the units with the desired view, use the syntax below:

Player switchCamera "INTERNAL"

The following syntax example explains the situation where the player has the possibility
to switch into the perspective of the reconnaissance unit within a predefined time and a
predefined view. Once the time has ran out, the player will switch back into its own
perspective again. The start syntax is to be freely defined again.

Every kind of unit can serve as reconnaissance unit. The execution syntax is defined as
follows, where the player itself, the spotter, the time and the perspective need to be
defined.

[Player,Spotter,10,"EXTERNAL"] exec "spotterSwitch.sqs"

SpotterSwitch.sqs

_leader = _this select 0
_spotter = _this select 1
_timeo = _this select 2
_mode = _this select 3
_i = 0
disableUserInput true
_spotter switchCamera _mode
#Loop
_i = _i + 1
? _i >= _timeo : goto "Ende"
~1
goto "Loop"

#Ende
titleCut [" ", "Black Out"]; titleFadeOut 1
~0.5
_leader switchCamera "INTERNAL"
disableUserInput false
titlecut [" ", "Black In"]; titleFadeOut 1
exit

6.22 - The spotter

218

The next example will explain how one can get units to capitulate themselves so long as
a special condition has already been executed. A condition could be that the unit would
have less ammunition than what is defined, or the unit is injured more than what was
predefined or that less allied units are still existing in the desired area.

It's possible now to concentrate the conditions to avoid each unit capitulating although
there are still enough units left in the respective area. There needs to be more than one
condition executed to make the units capitulate. For example:

?!(canStand _enemy) AND (_ammo < _AmmoStat) : goto "PutDown"

The array above defines the condition, that the unit “is not able to keep standing“ and
additionally that the “status of the remaining ammunition is smaller than what was
predefined”. If both conditions become true, the script will jump to the label PutDown
and the unit will capitulate himself. There were several mixed condition lines added to the
script within the label Check. If one of those become true, the unit will capitulate as well.

Now a special feature. In real life, it happens sometimes that units are capitulating but
nevertheless grabbing the weapon in an unexpected moment, or they have an additional
weapon hidden somewhere in their equipment. Other units may capitulate totally
without any unexpected issues. This script enables one to define these situations
randomly. One can define whether the unit will really capitulate or try to flee someone.
One can further define whether either the weapons are all deleted or one weapon is still
existing and can be used by the respective unit.

If a unit is capitulating himself, he will drop all his primary and secondary weapons and
cross his hands behind the neck. If the user has defined that the unit should get fixed
right on their position, nothing more will happen. But if it has been defined that the unit
shall try to flee, it might be that he'll fire back if one weapon hasn't been deleted. It might
also be that this unit is throwing a hand grenade. And it can further be that the unit is
rearming by a dead unit. Because of SetCaptive, the AI unit will not fire on capitulated
units, but they would if the unit is trying to flee or trying to grab a weapon.

If fixed values were used in the script, one can be sure that the units will always capitulate,
if desired conditions became true. But if there are random values used within executing
the array, the player will always remain excited about what will happen next.

The Trigger Array
The trigger array will be explained as follows:

[Name,EscapeValue,Ammunition,Injurned,DeleteWeapons,Fix,Friends,Area]

Here an example of fixed values:

[this,0.5,1,0.5,0,0,3,150]

Here an example with random values:

[this,random 0.7,2,random 1,random 1.5,random 2,6+(random3),200]

6.23 – Unit is capitulating itself

219

C
h

ap
ter

6

These variable, regardless of whether fixed or variable, will be given to the script. But this
still has to be defined right behind the array. To execute the script use the following syntax:

[this,0.5,1,0.5,0,0,3,200] exec "capitulation.sqs";

Array definitions

Name - Name of the unit. This parameter can be used within the init line also.

Escape Value- Escape value of the unit which represents a condition.

Ammo - Minimum value of ammunition which is needed to make the units capitulate.

Injurned - Minimum grade of injury which is needed to make the units capitulate.

Weapons - Delete all weapons or not. Value 1 will delete all weapons while the values
deleted 0.1 till 0.9 will keep the weapons. Unknown what happens by using

random 1.5. Within >=1 all weapons are removed so the random values
shouldn't be larger than 1.5!

Fix - The unit will definitely keep standing once she has been capitulated.
Values <=1 are fixing the unit, Values <=2 enables the unit to escape if
possible. The example shows random 2 = unknown.

Friends - How many allies are still in the respective area? The condition is caused if
the value has fallen below the predefined number. The values used in
the example are 6+(random3), so 6 plus random value. There were
East units defined in the script, if one wants to get other units, these
parts (unit classes) need to be edited by the user.

Area - Area which shall be checked. If there are no units left in the defined area,
the trigger will execute.

Single Unit
If the user only wants one unit eventually to become capitulated, the following syntax needs
to be pasted into the init line of the unit. Now the desired values only need to be defined.

[this,0.5,1,0.5,0,0,3,200] exec "capitulation.sqs";

Units within an area
All units will execute the script by using the following executing syntax. If the random
values were used, each units will behave different to the others.

Trigger:

Activation: EAST
Once

Axis a/b: optional
on Activation: {[_x,random 0.7,2,random 1,random 1.5,random 2,6,200]

exec "capitulation.sqs"} forEach thislist

220

This example can be expanded indefinitely and even the conditions can be freely defined.
Very detailed... but all must have a limit..

?(!(local server)):exit
_Enemy = _this select 0
_Fleeing = _this select 1
_AmmoStat = _this select 2
_Injurned = _this select 3
_Removeall = _this select 4
_Standfix = _this select 5
_friendly = _this select 6
_Area = _this select 7
_Enemy allowFleeing _Fleeing

#Check
? not alive _enemy : exit
_ammo = count magazines _enemy
_dammage = getdammage _enemy

;The following 2 lines are representing one single line! Please add/remove class names!

_friends = count nearestObjects [_enemy,
["SoldierEAA","SoldierEAT","SoldierECrew","SoldierEMiner","SoldierEG","SoldierEMG",
"SoldierEMedic","SoldierESniper","SquadLeaderE","T72","BMP2","UAZMG","ZSU"], _area]

;The following 2 lines are representing one single line!
? (_friends < _friendly) AND (_ammo < _AmmoStat) AND (_dammage > _Injurned) :

goto "PutDown"

;The following 2 lines are representing one single line!
? (_ammo < _AmmoStat) AND (_dammage > _Injurned) AND (_Fleeing > 0.6) :

goto "PutDown"
~5
goto "Check"

#PutDown
_enemy action ["DROPWEAPON", _enemy, primaryWeapon _enemy]
~1
playSound "Dont-shoot"
_enemy action ["DROPWEAPON", _enemy, secondaryWeapon _enemy]
~2
? _Removeall >= 1 : removeallWeapons _enemy
_enemy playMove "AmovPercMstpSsurWnonDnon"
~1
? _standfix <= 1 : goto "Standfix"
? _standfix <= 2 : goto "Fleeing"
exit

#Standfix
_enemy disableAI "ANIM"
_enemy setCaptive true

#Fleeing
_enemy disableAI "ANIM"
_enemy setcaptive true
~30 + (random 60)
_enemy enableAI "ANIM"
_enemy allowFleeing _Fleeing
_enemy setCaptive false
exit

This example is actually not meant for regular use as a mission feature but as quite good
help while editing a mission. It enables the user to beam to any desired position on the
map by using map-click only to check whether all created things are running correctly. So
the user doesn't need to keep restarting the mission or running over the map. That saves
a lot of time and nerves.

This example is combined with a radio trigger. The following syntax is needs to be written
within the init line of a unit or an object. But one can also create an Init.sqs within the
missions folder to make the script run once the mission has been started.

[] exec "teleport.sqs"

The variable Teleport will be set on true later by using the radio trigger and the script
starts to work. If the player clicks now on the map, he´ll beam to the position where he
clicked on the map and the script will end. The marker PosM is beaming now to the
position where the user has clicked, so the position will be visible on the map where the
users character is currently located.

Radio Trigger:

Activation: Radio Juliet
Repeatdetly

Text: 0-0-0 Juliet
onActivation: teleport=true

Marker:

Name: PosM
Color: rot
Symbol: Destroy
Axis a/b: 1

Teleport.sqs

To get the same result without a script just paste the syntax below right into the init line
of the player character, but this function will permanently be active. The advantage is that
this version is pretty easy to realize, but the disadvantage is that the player will always
move over the map so far scripts are also used which are including the map-click.

onMapSingleClick "Player setPos _pos";

221

C
h

ap
ter

6

6.24 - Teleport

#start

@teleport
titleText ["Click on the map to teleport yourself","plain down"]
onMapSingleClick "player setpos _pos; teleport=false; ""PosM"" setMarkerPos _pos"

@!teleport
titleText [" ", "plain down"]
~10
"PosM" setMarkerPos [0,0]

goto "start"

The following example will explain a possible variant of the persecution script in much
more detail. So the persecutor which was named Hunter in this example will get the
correct behaviour assigned before he starts to get to the player character. The script will
be active as long as the player or the persecuting unit or group is no longer alive. To run
the script use following syntax:

[Hunter, Player] exec "scripts\hunter.sqs";

Hunter.sqs

There’re possibilities of course to realize this by using waypoints, but this is only an
example of one way to do it. The collaboration between the different commands should
be shown here like the implementation of your own ideas and combining them with each
other as well.

222

6.25 - The persecution script

_hunter = _this select 0
_target = _this select 1

_hunter setBehaviour "AWARE"
_hunter setCombatMode "RED"
_hunter setSpeedMode "Full"
_hunter doTarget _target

#Loop
?_target distance _hunter >= 10 : {_x doMove getPos _target} foreach units _hunter
~4
? (count units _hunter) <= 1 : exit
?(!(alive _target)) : exit
goto "Loop"

Chapter 7
- Multiplayer -

This chapter explains the basics of multiplayer missions. After working with this chapter,
you will be able to create and edit your own multiplayer missions.

7.1 The multiplayer mission 224
7.2 The respawn positions 224
7.3 Flexible respawn pos 225
7.4 The MP-Description.ext 226
7.5 The different ways to respawn 227
7.6 The deathmatch 227
7.7 Defining the multiplayer area 228
7.8 Time and rating 229
7.9 Assigning and displaying Scores 231
7.10 Time display 232
7.11 The class header 233
7.12 The respawn dialog 233
7.13 Stringtable MP basic values 234
7.14 The vehicle respawn 235
7.15 Mr-Murray´s vehicle respawn 236
7.16 Flag basic informations 238
7.17 Capture the flag 240
7.18 The public variable 246
7.19 Preface information for MP missions 247
7.20 The controlling commands 249
7.21 The armament within multiplayer 250
7.22 Text messages for a specific player 251
7.23 Join in progress (JIP) 252

223

C
h

ap
ter

7

The information about creating multiplayer missions could fill a whole separate book.
This chapter will explain the most important parts of multiplayer mission creation and
will allow you to create your own simple multiplayer mission. The information given here
can be used in more complex missions later on. It´s basically recommended to place a
game logic on each Multiplayer map which is called Server!

Units
To make sure that units which are placed on the map are playable later in the mission, one
has to select the option“playable”in the respective drop down menu of the unit menu in the
editor. If one wants specific units to only exist if they are controlled by a player, the following
command has to be added to the Description.ext: disableAI=1. Playable units which are not
in use will be deleted and they will be not replaced by AI units and are not visible.

Number of human players?
One can get this information as a value which can be further used as a condition!

hint format ["West: %1\nEast: %2", playersNumber WEST, playersNumber EAST];

or now the condition:

? playersNumber > 4 : hint format [“WEST: %1”, playersNumber WEST]

Markers are the best way to define respawn points. Respawn markers have to be renamed
to match the side using the respawn point:

West: Respawn_west Resistance: Respawn_guerrila
East: Respawn_east Civilian: Respawn_civilian

If one wants to add more respawn points, a respective number has to be added behind
the name. I.e.:

Respawn_west_1, Respawn_west_2,...

One also has the possibility to use other objects instead of markers. It's possible to use
Objects and Game Logics. The disadvantage of doing this is that the unit will be respawned
exactly in the place of the object or game logic, while the radius of the marker is adjustable
which means that the units can be respawned at any point within the marker radius.
224

7.1 - The multiplayer mission

7.2 - The respawn positions

C
h

ap
ter

7

If one wants to create a mission which contains flexible respawn points, the user has
several possibilities. To explain the "how to", an execution of a mission target shall serve
as example.

Every mission begins the same way. The units are placed at some point on the map. Until
the first target has been destroyed, the respawn point will not move. If Target1 has been
destroyed, the respawn point moves to the position of Target1 and enables the player to
be respawned at the new position. If the mission contains several mission targets, the
respawn point will jump from target to target after the respective objective has been
destroyed or has been executed.

The player has several respawn possibilities. An example:

Respawn Marker

Name: Respawn_West
Axis a/b: 50/50

Trigger

Type: Once
Name: AreaOne
Axis a/b: 50
Activation: OPFOR

Not present
OnActivation: "Respawn_West" setMarkerPos getPos AreaOne

hint "Congratulations - Target one accomplished!"

In that example, a new trigger called “AreaOne” will be placed, which has to check
whether the zone is free of enemy units. If it's true, the marker called Respawn_West will
be moved right onto the position of the trigger called “AreaOne” and a screen text
appears which says: "Congratulations - Target one accomplished!"That shall serve as a
small example only. It's possible to have the marker moved to another position within
the target zone.

225

7.3- Flexible respawn points

One can define the basic settings in the Description.ext. For example, the type and
countdown to the respawn. The following components are needed:

respawn=3; - The kind of respawn

respawnDelay=6; - The countdown until the unit will respawn

respawnVehicle=3; - The kind of the vehicle respawn

respawnVehicleDelay=10; - The countdown until the vehicle will respawn

disabledAI=1; - Units which have been defined as playable will not
be present as AI units in the game

AIkills=1; - The score of the AI units will be counted as well.

The following example shows the most important parts which need to be defined in the
Description.ext.

Description.ext

226

respawn=3;
respawnDelay=6;
respawnVehicle=3;
respawnVehicleDelay=10;

disabledAI=0;
AIkills=1;
respawnDialog = false;

class Header
{

gameType = CTF;
minPlayers = 2;
maxPlayers = 10;

};

titleParam1 = "Time limit:";
valuesParam1[] = {10000, 300, 600, 900, 1200, 1500, 1800, 2100, 3600, 7200};
defValueParam1 = 1800;
textsParam1[] = {"Unlimited", "5 min", "10 min", "15 min", "20 min", "25 min",

"30 min", "35 min", "60 min", "120 min", };
titleParam2 = "Score to win:";
valuesParam2[] = {10000, 5, 7, 10, 15, 20, 25, 30};
defValueParam2 = 5;
textsParam2[] = {"Unlimited", 5, 7, 10, 15, 20, 25, 30};

7.4 - The MP-Description.ext

C
h

ap
ter

7

There´re several possibilities for respawning once the player has been killed. Those
possibilities will be defined in the Description.ext when the mission is created. That is
meant for vehicles and for units as well. But it doesn't make much sense to respawn a
destroyed vehicle back into the game as seagull. The vehicle respawn is more accurately
explained in Chapter 7.10 - The Vehicle Respawn.

The ways to respawn:

0 or "None" - No Respawn
1 or "Bird" - Respawn as Seagull
2 or "Instant" - Respawn right on the position where one has been killed
3 or "Base" - Marker respawn (Respawn_west,…)
4 or "Group" - Group based respawn (If no more friendly AI units

are left, then respawn as seagull)
5 or "Side" - Side based respawn (If no more friendly AI units

are left, then respawn as seagull)

Vehicles can only spawn again with the values 0, 2 and 3.

If one wants to create a deathmatch mission which shall be playable by only one or more
players or even against the AI, it's necessary to turn units on the same side against each
other.

Variant 1
The “Setfriend-order“ could be a possibility:

East setFriend [East,0.1]

If there are several sides, all of them need to become enemies of each other:

Variant 2
This syntax makes units enemies of each other, indifferent of which side they belong to.

this addRating ((- rating this) - 100000)

Units which haven't got this entry will not be shot by their own side.

Note!
While creating deathmatch mission with AI units, it's necessary to allocate two waypoints
as a minimum, which have to cover a wide enough range to make sure that those units
will move throughout the playing field.

227

7.5 - The different ways to respawn

7.6 - The deathmatch

Because the island is so large (it's 400 square kilometers), its necessary to enclose the
battlefield. This area can be visible on the map and in the landscape. The game already has
an integrated function available to make this possible. The function enables the creator
of the deathmatch mission to define his playing area. An object needs to be placed on the
map which should ideally be an invisible heli-pad. This object defines the center-point.
The syntax only needs to be entered in the init line of this object. The invisible heli-pad
can be found in units (F1) Empty/Objects.

This object needs to be placed in the middle of the gaming field. Then enter following
syntax into the init line:

AArreeaa11 == [[tthhiiss,,440000,,440000,,110000,,1100]] eexxeeccVVMM ""aarreeaa..ssqqff""
There is no need to script your own area.sqf. It´s already implemeted in the engine!

The object, in this case the heli-pad, is renamed to “Area1” automatically when the
missions begins. Some warning signs, which define the outer border of the battlefield,
will be generated automatically around the heli-pad. It's up to the definitions in the syntax
how large or small this size will be in the mission.

The sytnax explains itself as follows:

Name = [Center, X-Value, Y-Value, Number of Objects, Angle]

All Values are variable and freely definable. You can see an example about how it might
look in the images below:

One can save a lot of work by using this option. Otherwise all those objects need to be
placed on the map individually. It's now also possible to place dead-zones around the
battlefield to avoid players leaving the gaming area.

228

7.7 - Defining the multiplayer area

C
h

ap
ter 7

The limitation of the time and its rating are multiplayer settings which can be adjusted,
but one needn’t do this. To do this two parameters within the description.ext need to be
defined which are looking like as follows. They are also displayed later in the multiplayer
lobby.

Time limit

titleParam1 = "Time limit:";
valuesParam1[] = {10000, 300, 600, 900, 1200, 1500, 1800, 2100, 3600, 7200};
defValueParam1 = 1800;
textsParam1[] = {"Unlimited", "5 min", "10 min", "15 min", "20 min", "25 min", "30

min", "35 min", "60 min", "120 min"};

All values in here are variable. The time values are selectable right now within the menu.
The appropriate text of time is defined in the last line and can also be freely defined

Score limit

titleParam2 = "Score to win:";
valuesParam2[] = {10000, 5, 7, 10, 15, 20, 25, 30};
defValueParam2 = 5;
textsParam2[] = {"Unlimited", 5, 7, 10, 15, 20, 25, 30};

The values are freely adjustable here as well and are representing the scores which are
needed to finish the mission successfully.

As one can see on the image below, the defined parameters above are used as well as
they have been defined. Now they are selectable within the multiplayer lobby.

By doing this the rough configuration has been finished. The user now has the possibility
to adjust the score and time settings as he likes to do. The only missing thing right now
is the configuration on the map which tells the game, that the needed score has been
reached or the respective time ran out. So now we come to the checking triggers.

229

7.8 - Time and rating

Checking Trigger
Additionally to all the above, we now need three triggers which are checking the advance.
Those triggers have to be defined as follows:

Trigger 1 (Time guard):

Name: TimeEnd
Condition: (Param1<10000) and (time>=param1)
on Activation: EndOfMission=true
Axis a/b: 0/0

Trigger 2 (Score guard):

Name: ScoreEnd
Condition : (Param2 < 10000 and (({score _x >= Param2}) count

[S1, S2, S3, S4, S5, S6] > 0))
on Activation: EndOfMission=true
Axis a/b: 0/0

Trigger 3 (End trigger):

Typ: Ende 1
Condition : EndOfMission
Axis a/b: 0/0

There’re units defined within the condition line which are named S1, S2, S3, S4, S5, S6.
These can be renamed as one wants, but always make sure that the new names are
adapted within the condition line of trigger 2.

To make sure that the points of an AI unit will be counted, it has to be predefined in the
Description.ext with AIkills=1.

230

C
h

ap
ter 7

There’re several ways existing to get the reached score to be displayed. That may happen
if someone has conquered a enemy flag, executed a special mission target or just got
points another way. But that depends on the missions storyline.

The Description.ext needs to be defined first as explained in Chapter 7.8.

Score limit

titleParam2 = "Score to win:";
valuesParam2[] = {10000,5,7,10,15,20,25,30};
defValueParam2 = 5;
textsParam2[] = {"Unlimited",5,7,10,15,20,25,30};

The score variable needs to be defined within either the Init line of the unit or in the
init.sqs which are defined with

WestScore = 0
EastScore = 0

here to assign the value 0 right at the beginning of the mission. Each side shall receive
points for executing a mission target, killing an enemy or whatever. to enable the mission
to allocate score, the following syntax is needed WestScore = Westscore +1. Each time
a predefined condition has been executed the syntax above will add the value 1 (1 point)
to the respective side’s score count. To remove points again the same syntax is needed
with the only difference Westscore = Westscore -1.

If one wants to get the score displayed, there’re several possibilities. Maybe by using a
radio trigger which can be used when it's needed, or that the points will be displayed on
the screen for a few seconds when the opposing side has got one or some points.

To do this, the following syntax will be used regularly:

TitleText [format [localize "STR_MP_STATUS", WestScore, EastScore], "Plain down"]

A radio trigger could look like this:

Getting score displayed (radio trigger)

Activation Radio Alpha
Repeatedly

Axis a/b 0
Text @STR_MP_SHOWSCORE
on Activation TitleText [format [localize "STR_MP_STATUS",

WestScore, EastScore], "Plain down"]

231

7.9 - Assigning and displaying scores

In some missions it might be useful to get the time displayed to inform the player that the
mission will end soon and to heat them up to making some points before it's over. An
approved method is to use several checking triggers within the mission which are getting
executed when the predefined time has run out. These triggers will be defined as follows
so far we’ve defined some parameters to the description.ext.

Time limit

titleParam1 = "Time limit:";
valuesParam1[] = {10000, 300, 600, 900, 1200, 1500, 1800, 2100, 3600, 7200};
defValueParam1 = 1800;
textsParam1[] = {"Unlimited", "5 min", "10 min", "15 min", "20 min", "25 min",

"30 min", "35 min", "60 min", "120 min"};

The last two lines are actually to be defined within one single line which is not possible
right here.

The following example will show how the code for a checking trigger looks, which will
display that there’s only one hour left to play

Time Display (checking trigger)

Condition (Param1<10000) and (Param1>=3600) and ((Param1-time)
<=3600)

Axis a/b 0
on Activation hint localize "STR_MP_07"

Now the respective value actually needs to be defined for each further trigger. In this
example the string table basic values were used as explained in Chapter 7.13.

Here is a closer explanation of the condition:

(Param1<10000) and (Param1>=Value) and ((Param1-time)<=Value)

Value stands for the value which was defined at valuesParam1 in Parameter1 (i.e: 600)

(Param1<10000) and (Param1>=600) and ((Param1-time)<=600)

One would now define the correct string table value in on Activation right now which
would be displayed then. In this case it would be:

Hint localize "STR_MP_04" - 10 Minutes left

232

7.10 - Time display

The class header is just a definition which needs to be defined in the description.ext. Its quite
necessary to define the class header because all the needed information will be displayed
here. It contains the minimum and maximum numbers of players and the mission type
which will be displayed to the player. It's also needed because it lets the player know the
required information which he or she may need to decide which server to join. The image

below
shows two servers. The 1st one has a class header definition in its description.ext, while the
one below hasn’t got one, and the result can be seen in the mission-type.

GameType: The mission type will be defined here:

SC - Sector Control
DM - Deathmatch
CTF - Capture The Flag
COOP - Cooperation
TEAM - Team

MinPlayers: The minimum numbers of players

MaxPlayers: The maximum numbers of players

The example below shows the final edited class header in the Description.ext

The Respawn dialog is the dialog which will be displayed when the player is killed. It displays the
time which is remaining until the player can be respawned into the mission. One can activate or
deactivate this option by using following entry which has to be defined in the Description.ext:

respawnDialog = false;

If the dialog needs to be visible again, just change false to true.

233

C
h

ap
ter 7

class Header
{

gameType = CTF;
minPlayers = 2;
maxPlayers = 8;

};

7.11 - The class header

7.12 - The respawn dialog

There’re a lot of stringtable values already available by default in the game, which can be
used without a Stringtable.csv. The following list contains a little overview of the most
important stringtable values which belong to the Multiplayer Missions:

STR_MP_POINT_W - US scored a point
STR_MP_POINT_E - SLA scored a point
STR_MP_FLAG_TAKEN_W - Name has the US flag
STR_MP_FLAG_TAKEN_E - Name has the SLA flag
STR_MP_FLAG_BACK_W - The US flag has returned
STR_MP_FLAG_BACK_E - The SLA flag has returned
STR_MP_SECTOR_ATTACK_W - US is attacking sector XY
STR_MP_SECTOR_ATTACK_E - SLA is attacking sector XY
STR_MP_SECTOR_W - Sector XY is now under US control
STR_MP_SECTOR_E - Sector XY is now under SLA control
STR_MP_02 - 2 minutes remaining
STR_MP_03 - 5 minutes remaining
STR_MP_04 - 10 minutes remaining
STR_MP_05 - 20 minutes remaining
STR_MP_06 - 30 minutes remaining
STR_MP_07 - 1 hours remaining
STR_MP_NOLIMIT - Unlimited
STR_MP_SCORE - Scores
STR_MP_SHOWSCORE - Show Scores
STR_MP_TIME - Time
STR_MP_STATUS - Status – USA: SLA:
STR_MP_GAMEOVER_W - The US won!
STR_MP_GAMEOVER_E - The SLA won!
STR_MP_GAME_DESC_CTF - Two opposing teams, two flags.

Capture the enemy flag.

STR_MP_GAME_DESC_DM - Every man for himself. No-one is your ally.

STR_MP_GAME_DESC_SCONTROL - Take control of the designated sectors to
gain points.

STR_MP_GAME_DESC_PILOTDOWN - Find and rescue the pilots.

STR_MP_GAME_DESC_HOLDCASTLE - US: conquer the castle
SLA: defend the castle

To get them displayed, just use the already known ways to display text on the screen. See
Chapter 7.17 to get more information.

234

7.13 - Stringtable MP basic values

C
h

ap
ter 7

235

The vehicle respawn can be used in two ways. The default way and the self-made way,
which I´d like to present in the next point. But first the default variant:

Every vehicle which shall respawn needs to get a special entry entered into its init-line.
This entry defines the individual configuration. The Syntax is as follows:

Vehicle1 respawnVehicle [Time,Number]

Vehicle1 respawnVehicle [Time]

If one defines an individual respawn time-value to this vehicle, the game will ignore the
time that is defined in the Description.ext, and will use the time which was defined for
the vehicle directly. If the number for respawns in the init line was defined as 0, the
vehicle would respawn eternally.

The Description.ext needs some standardized lines which need to be defined to make it work:

respawnVehicle=3; - The type of respawn

respawnVehicleDelay=10; - The time which is left until the vehicle can
spawn again

The different kinds of respawn:
Vehicles only have 2 ways to respawn. These are to be respawned at “The place of
death(2)“ or to be respawned at a “Predefined location (3)“. To define the type of
resapawn, the following syntax needs to be written in the Description.ext:

respawnVehicle=3; - The kind of respawn

0 or "None" - No Respawn
2 or "Instant" - Respawn at the place of death
3 or "Base" - Marker respawn (respawn_west, …)

The Respawn Points
The respawn points used for vehicles are called as follows:

West: Respawn_Vehicle_West Resistance: Respawn_Vehicle_Guerrila

East: Respawn_Vehicle_East Civilian: Respawn_Vehicle_Civilian

7.14 - The vehicle respawn

Beause the default variant doesn't offer many features, so I worked around a little bit with
that subject and recreated the following solution. The special thing is that this one doesn’t
need an entry in the Description.ext.

At first one needs place a vehicle on the map which is to be used for the vehicle respawn.
This vehicle has to be named Veh1 so it further needs a fixed respawn point which will
be represented by a game logic, named Veh1Pos. Now we have a vehicle with defined
spawn point. What we further need now is a checking trigger which is checking whether
the vehicle is still alive or not or has the ability to drive (depends on level of damage).

Each vehicle which shall be resapwnable receives it's own positions point (Logic) and
it's own checking trigger with the respective name of the vehicle.

Checking trigger (Vehicle guard)

Name: Veh1Guard
Condition: !Canmove Veh1
on Activation: [Veh1,"M1Abrams",Veh1Pos,360,2,10,1,0,0]

exec "vehicle-respawn.sqs"
Axis a/b: 0/0

Logic (Positions point)

Name: Veh1Pos

The Array which is present in the Activation line of the checking trigger (above) contains
all settings which are important/needed. So one doesn't have to switch back into the
script but has also the possibility to adjust all the things only by configurating the array.
This one can be explained as follows:

[VehicleName, VehicleClass, RespawnPosition, Azimut, RespawnTime,
RespawnNumber, Delete, Static, Effect] exec "vehicle-respawn.sqs"

VehicleName - Name of the vehicle
VehicleClass - Class of the vehicle (see Chapter 3.7)
RespawnPosition - Point where object will spawn again
Azimut - Direction of view (Value of direction of view)
RespawnTime - Time left to the next respawn
RespawnNumber - Number of resapwns (0=No Respawn)
Delete - Delete vehicle (0=no; 1=yes)
Static - Respawn static or flexible (0=Flexible; 1=Static)
Effect - Explosions effect while deleting (0=No Effect; 1=Effect)

236

7.15 - Mr-Murrays vehicle respawn

C
h

ap
ter 7

This Array is calling the following script: vehicle-respawn.sqs.

237

?!(Local Server): exit

_vehicle = _this select 0
_vehicleClass = _this select 1
_respawnArea = _this select 2
_azimutCode = _this select 3
_respawnDelay = _this select 4
_respawnRate = _this select 5
_deleteVehicle = _this select 6
_staticRespawn = _this select 7
_deleteEffect = _this select 8

_counter = 0

#Start
~1
?(Canmove _Vehicle) : goto "Start"

;// Respawnrate (Number of Respawns)
? (_counter >= _respawnRate) : exit
_counter = _counter +1

;// Staticposition (0=Flexible/1=Static)
? (_staticRespawn == 0) : _respawnArea setPos getPos _vehicle
? (_staticRespawn == 0) : _VehAzimut = getDir _vehicle

~_respawnDelay

;// deleteVehicle (0=No Delete/1=Delete)
? (_deleteVehicle == 0) : goto "Respawn"
deleteVehicle _vehicle

;// Delete effect
? (_deleteEffect == 0) : goto "Respawn"
_bomb="M_Javelin_AT" createVehicle [0,0,1000]
_bomb setPos getPos _vehicle

;// Respawn
#Respawn
~2
_vehicle = _vehicleClass createVehicle getPos _respawnArea
_vehicle setDir _azimutCode
? (_staticRespawn == 0) : _vehicle setDir _VehAzimut
goto "Start"

To create missions like Capture the Flag (CTF) or Sector Control (SC) or similar, a basic
knowledge about using flags is needed which will now be handled in this subitem. At
first it’s important to explain that all flags can be allocated to a special side. If a flag has
already been allocated to a side (maybe West), this side does not have the possibility to
capture the flag, while all the other sides will have.

The needed syntax is called:

this setFlagSide SIDE

This Syntax has to be defined into the init line of the respective flag. So each flag will be
configured now individually by receiving an own entry into it´s init line. The following is
an example about how to define a flag:

this setFlagSide WEST; this setFlagTexture "Flag.jpg"

Once both of these entries have been made, the flag is finally configured. The flag has
got a side and and a flag texture allocated. See Chapter 5.35 for flag textures or the next
page. Additionally to this, each flag has to be named as a variable. I.e. FlagWest for the
West flag and FlagEast for the East flag.

So if an East soldier is getting close to the West flag, he’ll have the possibility to capture
the flag, which will be placed now onto his shoulder, so that he has to carry it around. If
he dies, the flag will keep lying next to his body. If another East soldier gets to the dead
body, he has the possibility to grab the flag. But if a West soldier gets close, then the flag
will automatically get beamed back to its Flagstaff.

There are still some commands to explain:

ObjNull
This value stands for zero, which is representing the fact that the flag is still on its flagstaff.
If a player is grabbing the flag, the value is no longer ObjNull. It´s possible to request or
build that status.

Requesting of a status

flagOwner FlagWest == objNull

flagOwner FlagWest == EAST

Building of a status:

FFllaaggWWeesstt sseettFFllaaggOOwwnneerr oobbjjNNuullll
FFllaaggWWeesstt sseettFFllaaggOOwwnneerr NNaammee

238

7.16 - Flag basic informations

C
h

ap
ter 7

FlagOwner
The player which currently owns the flag is also called the flagOwner. So this command
is telling the engine which person is currently the respective carrier. If no one is currently
using the flag, the command objNull will get returned. The needed syntax is called:

flagOwner FlagWEST

flagOwner FlagWest == Name1

SetFlagOwner
By using this command a special unit will be defined as Flagowner. If the objNull is used
as name, the flag will be beamed back to its staff. To do this just use following Syntax:

Returning to staff:

FlagWest setFlagOwner objNull

Giving to player:

FlagWest setFlagOwner Name1

Flag
One can get the information of which unit is currently carrying the flag. So it is a check
of a flag owner. If no one is carrying the flag currently, the value objNull will get returned.

Flag Name1

Example: Checking for flag owner:

Flag Name1 == FlagWest

SetFlagTexture
One can define the texture of the flag just by using the syntax setFlagtexture. But this is
also explained in Chapter 5.35. The syntax for custom flag (which has to be saved within
the missions folder), is called:

this setFlagTexture "Flag.jpg"

A source path for default flags always have to be declared (see Chapter 5.35):

this setFlagTexture "\ca\misc\data\usa_vlajka.paa"

SetFlagSide
By using this command, one can adjust the side of the flag. Units which belong to the
defined sides are not able to pick up the flag. The syntax is called:

this setFlagSide SIDE

239

Capture the Flag is a special way of multiplayer gaming where one side has to capture the
flag of the opposing side to get it back into their own area and receive points. The winner
will be the side which is reaching the predefined number of points first, or receiving the
most points within a predefined time window.

What sounds pretty easy for playing is not as easy to be realized within the Editor. Because
there’re thousands of possibilities to create such a mission, I´ll introduce a special variant
where the user has the possibility to define the needed CTF-Bases himself. That means, if
one is placing all the following contents on the map, the functionality will already be
proofed.

Once all the components have been placed on the map as explained on the following
pages, the map should look like as follows:

The West Flag (FlagWest) is located on the left side with proper trigger area (ZoneWest),
a green marker (has only a marking meaning) and three further checking triggers, located
on the left of the checking trigger area.

East has almost the same components but with different values. The East Flag is named
FlagEast and the trigger area, ZoneEast. Additionally to this, there is also the red marker
which is representing the position of the flag on the map. Also on the right are the three
further checking triggers.

The further three triggers right below the player, containing an initiating trigger a time
and a score guard trigger and finally the end trigger which is exiting the mission once
the predefined conditions have been executed.

This example doesn’t contain any respawn or similar stuff, only the pure CTF content is to
be seen here which is securing the CTF-functionality.

240

7.17 - Capture the flag

C
h

ap
ter 7

CTF-Components
All the needed components including their configuration will be shown here individually.
For the parameters of Activation, Condition or init line some contents are written in several
lines, so it represents one single line only. But this is not possible due to the size of the book.

W E S T S I D E

Flag West:

Name: FlagWest
Init: this setFlagSide WEST;

this setFlagTexture "\ca\misc\data\usa_vlajka.paa"

Area West (Trigger area):

Name: ZoneWest
Axis a/b: 10/10

If the conqueror of the East flag reaches this trigger area, West side will score which will
become visible by a display on the screen

Conqueror East Flag (Checking trigger I):

Axis a/b: 0/0
Condition: not isNull flagowner FlagEast and

flagOwner FlagEast != OwnerEast
on Activation: OwnerEast = flagOwner FlagEast;

titletext[format [localize "STR_MP_FLAG_TAKEN_E",
name OwnerEast], "Plain down"]; FlagManW=true

This trigger is checking who is currently the owner of the flag. As long as the flag is on
the flagstaff, nothing will happen, but if a West unit gets the flag, a text message
appears which displays the name of the player who got the flag.

Conqueror of the East Flag is getting score (Checking trigger II):

Axis a/b: 0/0
Condition: (OwnerEast in list ZoneWest) and

not FlagManE and not Wert1
on Activation: Kdo=OwnerEast; OwnerEast=objNull;

FlagEast setFlagOwner objNull;
WestScore=WestScore+1;
titleText[format [localize "STR_MP_POINT_W",
WestScore, EastScore], "Plain down"];
FlagManW=false; Kdo addScore 5;
{_x addScore 5} forEach units Group Kdo

241

This trigger is now checking whether the conqueror of the East flag, so the FlagOwner
FlagEast, has entered the trigger area ZoneWest. The West side will get a score value
allocated now that will be displayed by a screen message.

Conqueror of East Flag is losing flag (Checking trigger III):

Axis a/b: 0/0
Condition: (isNull flagOwner FlagEast) and FlagManW
on Activation: FlagManW=false;

titleText[localize "STR_MP_FLAG_BACK_E", "Plain down"]

This third trigger is checking now whether the flag is still owned by the conqueror. If he
dies and one of the East units is getting the flag again from the body, so the flag will be
beamed back to its flag staff. A new text message appears on the screen that East got his
flag back.

E A S T S I D E

Flag East:

Name: FlagEast
Init: this setFlagSide EAST;

this setFlagTexture "\ca\misc\data\ rus_vlajka_co.paa"

Area East (trigger area):

Name: ZoneEast
Axis a/b: 10/10

If the conqueror of the West flag is reaching this trigger area, so East will get a score value
allocated, which will appear again by a Text message.

242

C
h

ap
ter 7

Conqueror West Flag (checking trigger I):

Axis a/b: 0/0
Condition: not isnull flagOwner FlagWest and

flagOwner FlagWest != OwnerWest
on Activation: OwnerWest = flagowner FlagWest;

titleText[format [localize "STR_MP_FLAG_TAKEN_W",
name OwnerWest], "Plain down"]; FlagManE=true

This trigger is checking for the owner of the West flag. So long as this one is still on it's staff,
nothing will happen. But so far a East unit is getting the flag, so a text message appears
again which says which player has just got the flag.

Conqueror of West Flag is receiving score (checking trigger II):

Axis a/b: 0/0
Condition: (OwnerWest in list ZoneEast) and

not FlagManW and not Wert1
on Activation: Kdo=OwnerWest; OwnerWest=objNull;

FlagWest setFlagOwner objNull;
EastScore=EastScore+1;
titletext[format [localize "STR_MP_POINT_E",
WestScore, EastScore], "Plain down"];
FlagManE=false;
{_x addScore 5} forEach units group Kdo

This trigger is checking now whether the conqueror of the West flag, so the FlagOwner
FlagWest, has entered the trigger area ZoneEast. If this condition is executed East side
will get a score value allocated now which will again be displayed by a screen message.

Conqueror WestFlag is losing flag (checking trigger III):

Axis a/b: 0/0
Condition: (isnull flagOwner FlagWest) and FlagManE
on Activation: FlagManE=false;

titleText[localize "STR_MP_FLAG_BACK_W","Plain down"]

This third trigger is checking now whether the flag is still owned by the conqueror. If he
dies and one of the West units gets the flag from the body, the flag will get beamed back
to its flagstaff. A new text message appears on the screen that West got his flag back.

243

Additions:
Once all the functionalities have been defined for each side, only the initializations
trigger, the time- and score guard trigger and the end trigger are missing, to become
the mission ended.

CTF-Init (Initialization trigger):

Name: CTF-Init
Axis a/b: 0/0
Condition: true
on Activation: Wert1=false; WestScore=0; EastScore=0;

OwnerWest= objNull; OwnerEast=objNull;
FlagManE=false; FlagManW=false; Zeit=0;

This trigger could alternatively get lost, but the commands from the onActivation line
would need to be defined within the Init.sqs. So I decided to use this variant for
functionally and safer reasons. Different variables will be defined here which are
cooperating with the triggers of each side.

Evaluation (Checking trigger):

Name: ScoreTimeGuard
Condition: (param1<10000 and ((time >= param1) or

(Zeit >= param1))) or (param2<10000 and
((WestScore>=param2) or (EastScore>=param2)))

on Activation: Zeit=Time; publicVariable "Zeit"; Wert1=true;
titletext[format [localize "STR_MP_GAMEOVER_FINAL",
WestScore, EastScore], "Plain"]; EndOfGame=true

This trigger is checking the Time and score settings which have been predefined by the
Admin right before the mission begins. The mission will be finished so far the respective
conditions have been executed. In this example the mission will be closed immediately,
because EndOfGame=true has been defined in the onActivations line. But this could get
lost and an alternative script like an Outroscript (i.e.: [] exec "outro.sqs") can be implanted
to set the variable EndOfGame on true right at the end of the script. So this trigger is
checking whether the respective variable value (WestScore, EastScore for the score or
Time for time) has reached or exceeded the predefined parameter value (Param1(score),
Param2(time)) . If it does, so the condition has been caused and the trigger will get
executed.

Take care that the time and score parameters have been defined as explained in Chapter
7.8. Please only edit the Description.ext entry, nothing else because the trigger has
already been configured.

244

C
h

ap
ter 7

End Trigger (Checking trigger):

Name: EndGuard
Condition: EndOfGame
Typ Ende 1

The end trigger will get caused so far the variable EndOfGame has been set on true and
is finishing the mission. It is advantageous to add a little time delay by adjusting the Min-
Mid-Max settings to avoid the trigger getting executed immediately but rather a few
seconds later.

Displaying the score (radio trigger):

Activation: Radio Alpha
Repeatdetly

Axis a/b: 0
Text: @STR_MP_SHOWSCORE
on Activation: titleText[format [localize "STR_MP_STATUS",

WestScore, EastScore], "Plain down"]

This trigger can get inserted as well although is not visible on the main graphic. This
enables all players to request the current score status just by using the radio chat Alpha.

Score and time definition within the Description.ext:
To complete the score and time control, they have to be defined as explained in Chapter
7.8. But here are the needed lines also which are used within the Description.ext.

 Time limit:

titleParam1 = "Time limit:";
valuesParam1[] = {10000, 300, 600, 900, 1200, 1500, 1800, 2100, 3600, 7200};
defValueParam1 = 1800;
textsParam1[] = {"Unlimited", "5 min", "10 min", "15 min", "20 min", "25 min",

"30 min", "35 min", "60 min", "120 min"};

The last lines are actually representing one single line, but this is not possible here.

Score limit:

titleParam2 = "Score to win:";
valuesParam2[] = {10000, 5, 7, 10, 15, 20, 25, 30};
defValueParam2 = 5;
textsParam2[] = {"Unlimited", 5 , 7, 10, 15, 20, 25, 30};

245

The public variable has to be used in Multiplayer games only, that’s why its explained in
this chapter and not in the Scripting chapter. One can basically compare it with the global
variable, although it’s nevertheless a little bit different. By using the public variable one
makes a global variable become public. That means that the information will be sent from
a client to all of the other ones and even to the Server or the Host also to execute the
respective Action.

Lets differentiate again:

Local Variable Valid in local areas only. As an example in a script(SQS) or in a
function(SQF). The variable is recognizable because of the
underscore right before the variable. Example: _Variable.

Global Variable When it comes to the global variable then it means that a unit or
an object, which was named, effects the whole mission. The best
example is the case if a second unit/object should receive exactly
the same name. An error message will appear that this variable
name is already in use.

If one is playing a Multiplayer Mission, so the Client will be recognized as a local variable,
what means that the global variable, which is meant for the whole Mission onto the whole
Map, turns to a local one. This is why that all happens for all clients (player) individually.
That all is not a Problem so long the respective units (Clients) has received fixed names.
Because every Client, who is joining the Mission is receiving his values. But if the creator
of a Mission wants to allocate a value to a variable, i.e. true or false, this will only take
effect for the respective player who is executing such a trigger, waypoint etc. So this
information now needs to be sent to all the other clients become to make the result of the
caused action visible for every client.

To make a local variable public, just use following syntaxes:

Target1=true; publicVariable "Target1"

So one turns Target1 on true and makes this Value public by using the additional
command publicVariable " Target1 ". This information will now be sent to all of the other
clients who are currently in the server or the host.

If one wants to use 2 or more variables which should be set on true or false, so they need
to be defined within the Init.sqs before. Then they can be defined as public variables and
the respective value can be set, as shown in the example below:

ppuubblliiccVVaarriiaabbllee""VVaarriiaabbllee11""
ppuubblliiccVVaarriiaabbllee ""VVaarriiaabbllee22""
VVaarriiaabbllee11==FFaallsseeVVaarriiaabbllee22==FFaallssee

246

7.18 - The public variable

C
h

ap
ter 7

This subchapter will explain some basic things, which are also important while creating
Multiplayer Missions. Because there is a big difference between editing Single player- or
even Multiplayer Missions, so it´s recommended to know where to take care while
Multiplayer editing.

Dedicated Server
The dedicated Server is a fixed assigned Server, where all Clients and the Administrator
need to access from outside. So it is only a server and nothing else, no Player is playing
on this machine. This server can also be located all over the world and it´s also possible
to rent such a server at your own Internet provider. This server will then be controlled
ingame by the Key commands which are explained here in Chapter 7.20.

Host
A host is a Computer where a Mission will be served and a player is playing at the same
time. The host needs to open (host) a mission, where all the other players can get access
on. The host is playing right with the same Computer, so he is server and Player.

Client
A Player who is joining a Mission is called a Client. It doesn’t make a difference whether
the Mission will be offered by a server or a host. If all Players are using a dedicated server
so all (incl. the admin) joining Players are are Clients. But if a Player is offering a Mission
by hosting so he´ll be the Host while all the other ones are the Clients

Difference between Singleplayer and Multiplayer
Every Mission creator who has already created Multiplayer Missions will know about the
issue that all the nice features which were hard to create or edit will run clearly within the
Editor, but not later in the Multiplayer game. So it´s important to recognize the single
subchapters in this chapter to define the important contents in your own MP Mission.

247

7.19 - Preface information for MP missions

Logic Server resp. Logic AI
It´s always recommended to place a Logic on the map which is called Server. An alternate
variant would be a Logic called AI, as called by BIS. That truly makes no difference whether
a server or AI will be used. This Logic will be created by the server only and will not appear
for the Clients. That becomes known that this System is the server. So one can define the
actions which shall run on the Server by using the following commands.

? !(local player) : exit
This Syntax right at the beginning of a script makes sure that this script is running for the
Clients only. So the System will get checked whether it’s a server or a Client. Because every
Player is getting the fixed variable Player allocated automatically by the System, it knows
that it may run the script. The information will be delivered to all Clients.

If the Player is hosting this Mission he’ll nevertheless be enable to execute the script,
because he is the Client and Server in one (person) System.

? !(local server) : exit
If this Syntax is defined right at the beginning of a script, this script will be executed on
the Server only. The Server can’t tell the difference between a local or a dedicated host.
This script will get executed normally for both versions, as long the system is hosting or
serving.

This Syntax should basically get used. It will work for the server resp. as a global machine,
which makes regulary more sense. Because most of the information needs to be given to
the Players as well. So we´re always working global! An alternate option would be
isServer. Examples:

? isServer : hint "Server" or ?! isServer : hint "Not Server"

Script for Players
If one wants to get a script executed which is determined for a special Player only so that
fact needs to be defined right at the beginning of the script. At first the unit should be
named within the Editor. When that happens, then the Syntax needs to be defined.

An example:

player != Soldier1 : exit

If the player is not named Soldier1 within the editor the script will exit. That could happen
if a Sound, or a text message, hint or what ever shall appear for one special Player only.

Two further Syntax examples. Is Player1 == Soldier1 then do this or the second Syntax, if
the players name will be == "Mr-Murray", then do this (here: exit)

(player == Soldier1) : exit

(name vehicle player == "Mr-Murray") : exit

248

C
h

ap
ter 7

This Section has actually nothing to do with Editing, but it’s nevertheless worth an
explanation because nearly every user will join MP Missions sooner or later, or wants his
Missions to be tested.

The Multiplayer section offers certain orders, which enable the Client among others, to
vote the Admin, to vote for a cheaters kick and lots more. But the Server admin has a
bunch more possibilities. These commands are nearly the same which were used in the
predecessor Operation Flashpoint®. Just three names were added. The following is a list
of the commands and their explanations.

Administrator commands

#login password Login as Administrator
#logout Logout as Admin
#vote admin (name or ID) Vote the Administrator (Even for clients)
#mission filename Select a mission with known Name
#missions Is calling the Mission selection menu
#restart Restart the Mission
#reassign Restart and reselect of a rolle
#kick (name or ID) Is kicking Player by Name or ID
#shutdown Restart the server
#init Is reloading the Server config file
#monitor (Interval in Sek.) Displays Performance Informationen of the Server

(Time in seconds. 0 stops the Monitoring)
#debug Calls certain information (checkfile, console,

totalsent, usersent, userinfo, userqueue)
#exec users Displays a list of all connected Players
#exec kick ID Allows to kick a Player from the Server
#exec ban ID Allows to ban a Player from the Server

Client commands

#vote missions Vote for Mission selection
#vote mission (name) If a special mission is prefered (vote)
#vote kick (name/ID) Vote for Client kick
#vote restart Vote for restart the Mission
#vote reassign Restart and reselect a role
#userlist Displays a list of all connected Players

To call the different commands just use the chat function ingame. To do this just hit the
– key, the same one which ebnables the underline _ (European Keyboard). After the game
is expecting an input, type your preferred command and press enter.

249

7.20 - The controlling commands

At first, there´s no difference between the armament in Multiplayer or Singleplayer
missions. The same method is used in Singleplayer as it us here as well. To remove or add
a weapon the known commands like removeWeapons this and this addWeapon are
just the same. But the really difficult thing happens when the client was killed and
respawned on the map. Then the default armament of the respective class is used again.
The client has to grap his favourite weapons again.

The problem can be solved just by using a small script. Just place a trigger on the map,
which is checking the status of the respective player, in this case Soldier1.

Checking trigger

Type: Repeatedly
Condition: ! alive Soldier1
on Activation [Soldier1] exec "weapon.sqs"
Axis a/b: 0/0

If Soldier1 got killed now, this trigger will execute and run the script weapon.sqs. The
script will make a break at @alive_Unit and will also wait until Soldier1 respawns again.
The delay depends on the adjusted respawn settings within the description.ext. But so far
Soldier1 will get spawned again, so the script will be activated and removes all weapons
at first. Then the defined new armament will be added to the Character. Don't forget to
define the magazines first so the weapons are already loaded with ammunition (as shown
in the scriptfile below).

250

_Unit = _this select 0
@alive _Unit
removeallWeapons _Unit
_Unit addweapon "Binocular";
_Unit addweapon "NVGoggles";
_Unit addmagazine "8Rnd_9x18_MakarovSD";
_Unit addmagazine "8Rnd_9x18_MakarovSD";
_Unit addmagazine "8Rnd_9x18_MakarovSD";
_Unit addmagazine "8Rnd_9x18_MakarovSD";
_Unit addmagazine "8Rnd_9x18_MakarovSD";
_Unit addmagazine "8Rnd_9x18_MakarovSD";
_Unit addweapon "MakarovSD";
_Unit addmagazine "30Rnd_545x39_AKSD";
_Unit addmagazine "30Rnd_545x39_AKSD";
_Unit addmagazine "30Rnd_545x39_AKSD";
_Unit addmagazine "30Rnd_545x39_AKSD";
_Unit addmagazine "30Rnd_545x39_AKSD";
_Unit addmagazine "30Rnd_545x39_AKSD";
_Unit addweapon "AKS74UN";
exit;

7.21 - The armament within multiplayer

C
h

ap
ter 7

Text messages are actually quite easy to understand. But while in Multiplayer Missions,
those messages will be displayed global, that means that up to the mission each player
will receive or see that message. That takes us to the question how can a side related
message be seen or if only one player has to recive the message, how do we go about
doing this?

The solution is a small script again, where actually the first script line is the most important
one. Because this line will define the player or the side which can see the message.
Following Syntaxes shall help fixing that problem.

Used for players: ? (player == Name1) : exit
? (player != Name1) : exit
? (name vehicle player != "Mr-Murray") : exit

Used for Sides: ? side Player == EAST : exit
? side Player != EAST : exit

So it´s possible to nearly create every syntax by yourself. That’s only up to the used
Parameters. The Syntaxes shown above are examples only.

Samples for usage
In the following example, the client who plays the unit named S1 will receive the message.
For example, the leader.

So there´re several ways to define the conditions. For example, if the player has a special
name then he does or does not receive the message.

The ways of receiving messages appeared on the screen is really up to the user and what
you personally prefer. So you can use hints as well as you can use screen messages or
resource appearances.

titleText [format["%1, you have a new task", name S1],"Plain Down"]

251

? (player != S1) : exit

hint format ["%1, you have a new task!", name S1];
exit

? (name vehicle S1 != "Mr-Murray") : exit

hint format ["Hello %1, you are play unit XY.", name S1];
exit

7.22 -Text messages for a specific player

Join in Progress is an important point which should always be looked out for and surly be
considered for creating Multiplayer Missions. Players will always connect or disconnect
while a mission is running. Especially if this mission is not password protected and runs
as a public server. That makes the real problem appear. If a Client is joining while a mission
is running, his machine needs to get the same status existing for the other clients.
Especially the mission targets and variables need to be synchronized with each other.

If Missiontarget1 is already done and also marked and the Variable Start is already set
on true (Start=true), then these values need to be aligned on the just joined client.

Normally the server should do that automatically, so things like Mission targets or the
status of variables would be compared with all clients. Unfortunately ArmA® doesn't
provide this option in the current status of the game, so one has to help a little to make
the mission playable on a dedicated server.

To do this the server regulary needs to call the public variables. So he would make the
current variables public and all Clients would always get supported with the newest ones.
That works also for just connected Players as well.

At first the Init.sqs, where all variables will generally receive one coherent value to become
all players is up date.

Init.sqs

The onPlayerConnect Line is a very interesting one. If a new client is connecting, the
sever has to run the script update.sqs. This script should be stored in the user created
folder scripts. The server Would call all public variables and would also synchronize the
status of variables for all systems.

252

Var1=FALSE
Var2=FALSE
Var3=FALSE

? (! (Local Server)) : goto "Skip"

PublicVariable "Var3";
PublicVariable "Var2";
PublicVariable "Var3";

#Skip
onPlayerConnected "Server exec ""scripts\update.sqs"" ";

7.23 - Join in progress (JIP)

C
h

ap
ter 7

253

Update.sqs
The update.sqs is a pretty easy and small script. Only the public variables are defined in
there which will become public by the server once it was created.

Mission targets
You can nearly do the same for the Mission targets. They should get synchronized if a
new client joins in progress to receive the current status of the targets. You will realize it
again by using a script or a function.

Ideally you will always let it run when a mission target was done or a new Player connects.
The way to do this is almost the same as used for the public variables. Only the init.sqs will
receive an additional line.

onPlayerConnected "[] exec ""scripts\TargetUpdate.sqs"" ";

TargetUpdate.sqs

Variables were used as a condition for achieving an objective. An example is if a group has
reached a special waypoint that was defined as a mission target. The variable Var1 will get
set on true and if the script gets called now and recognizes that Var1 became true, so
Missiontarget1 will get set on the status Done.

Missiontarget3 is a further example which is done so Name1 is not active anymore. It is
recommended to always call that small script when a mission target is done or a new
player has connected.

? (! (Local Server)) : exit

publicVariable "Var1";
publicVariable "Var2";
publicVariable "Var3";

exit;

? (! (Local Server)) : goto "Skip"

publicVariable "Var1";
publicVariable "Var2";

#Skip
~4
? Var1 : "1" objStatus “DONE”
? Var2 : "2" objStatus “DONE”
?! (alive Name1) : "3" objStatus “DONE”

exit;

Chapter 8
- Cam Scripting -

This chapter contains some hard Stuff. Camera scripting is not as easy as it seems to be,
but the result can be compared with a Hollywood movie. Special features like intro´s,
outro´s and some sequences while running the mission are quite necessary tools to better
understand the characters and/or the storyline. Explaining everything about cam
scripting would fill a whole book, so I will only explain the most important things here so
that you will be able to create your own scenes.

8.1 Controlling the camera 255
8.2 The camera coordinates 256
8.3 Creating a camera 257
8.4 The first scene 258
8.5 Patching the camera on a vehicle/unit 260
8.6 Text and blending Effects 261
8.7 Camera effects 262
8.8 Preload objects and positions 262
8.9 Executing map animation 263

254

It's actually quite simple to control the camera because only a few keys on the keyboard
are needed. The following explanation about the different function keys is assuming the
keys are still set at their defaults. Before the camera will get started, we should run it up
first. So place a unit or an object on the map and enter following syntax into the init line.

Name1 exec "camera.sqs" or this exec "camera.sqs"

The following list shows the most important keys to control the camera, locating objects
and defining positions. The option menu, especially the key configuration, offers many
more possibilities, but we are not interested in those right now. The controls which are
listed below will be enough to realize some good sequences.

Left Mouse button - Save current coordinates
Move mouse forward and backwards - Camera will do the same
Arrow key up - Move camera forward
Arrow key down - Move camera backwards
Arrow key left - Move camera left
Arrow key right - Move camera right
Numpad 4 - Rotate left
Numpad 6 - Rotate right
Numpad 8 - Rotate up
Numpad 2 - Rotate down
Numpad + - Zoom in
Numpad - - Zoom out
Picture up - Lift camera up
Picture down - Lower camera
L - Crosshair on/off
V - Camera off
Left Shift key - Camera speed
Ctrl - Select object (as shown below)

255

8.1 - Controlling the camera

C
h

ap
ter 8

When the user finally finds the position he wants to use in the movie, he only needs to
press the left mouse button to save the current position (coordinates) in the RAM. This
feature has changed a lot since ArmA® has been released. While the user only needed to
press the ctrl button in Operation Flashpoint® to save each position in an automatically
created clipport.txt file, in ArmA® the user has to go back to desktop by pressing Alt +
Tab to save each camera position in his camera script.

This script is just an editor text file which can be renamed as the user wants. Only the
intro and outro sequences need to be named a specific way (Intro.sqs, Outro.sqs). The
saved camera positions need to be saved in this file by press the right mouse button and
selecting paste out of the appearing context menu or just use the key combination Ctrl+V
The result looks like the example below:

The image above shows a newly created text block which has been saved in the RAM.
This script contains following details.

;=== 0:06:18
The time of day. Not really important, can be deleted or renamed

_camera camPrepareTarget [101880.56,-28486.36,1887.85]
Direction of view of the camera can also be defined as an object name as well.

_camera camPreparePos [9626.16,10062.31,2.00]
Camera position (X,Y,Z)

_camera camPrepareFOV 0.700
Camera zoom. So smaller the value so higher the zoom factor.

_camera camCommitPrepared 0
This value defines the time which the camera needs from one position to the next one,
defined in seconds. The position will change immediately if this value is still defined with 0.

@camCommitted _camera
The script will make a break here and wait until the camera has reached its next position.

256

8.2 - The camera coordinates

;=== 0:06:18
_camera camPrepareTarget [101880.56,-28486.36,1887.85]
_camera camPreparePos [9626.16,10062.31,2.00]
_camera camPrepareFOV 0.691
_camera camCommitPrepared 0
@camCommitted _camera

When all the camera positions have been saved and finally edited, then the script needs
a definition to create the camera and run the script. To do this just use the following
command:

_camera = "camera" camCreate [9626.16,10062.31,2.00]

The values, which are defined in _camera camPrepareTarget, can be used as X,Y,Z. There´s
also the possibility to use [0,0,0] if the camera shall get further-placed immediately.

_camera camPrepareTarget [101880.56,-28486.36,1887.85]
_camera camPreparePos [9626.16,10062.31,2.00]
_camera camPrepareFOV 0.691
_camera camCommitPrepared 0
@camCommitted _camera

The camera position and the command to run up the script have already been defined at
this point. Only the camera effects have yet to be defined.

_camera cameraEffect ["internal", "back"]

The following order makes the cinema border disappear, so that the movie will be
displayed in a full-screen format:

showcinemaborder false

When the work is done then we have the very first part of our newly created camera script.

So far we have the first part of our script, but it only would give us a picture which shows
a part in the landscape, and this is not quite spectacular. To get a movie with moving
camera drives and scenes, there are some more things needed.

257

C
h

ap
ter 8

8.3 - Creating a camera

_camera = "camera" camCreate [9626.16,10062.31,6.00]
_camera camPrepareTarget [101880.56,-28486.36,1887.85]
_camera camPrepareFOV 0.700
_camera camCommitPrepared 0
@camCommitted _camera
_camera cameraEffect ["internal","back"]
showcinemaborder false

258

We are using the same current camera position as created in Chapter 8.3, but we don’t
use the angle of view of the camera. In this example we’re about to use the name of a
unit called Aircraft1 in _camera camPrepareTarget [101880.56,-28486.36,1887.85]
instead of the [XYZ] coordinates, so just delete them and enter Aircraft1. Furthermore
the zoom needs to be adjusted, so we set it up to 600 to get quite close to our Harrier.

Now we only need another block of coordinates to tell the camera to move to move to this
new position. After this position has been defined it will be used in the script and finally
adjusted.

Intro.sqs

As one can see, two new lines have been added here:

titleCut [" ","BLACK IN"]; titleFadeOut 4

Fading from black into the sequence with a time of 4 seconds.

playMusic "Track1"

This syntax will run a music track to give some more atmosphere to the scene.

The camera is fixed now on Aircraft1 and needs 30 seconds to reach the next position.
Aircraft one is rolling and the camera starts to move to its next position. The camera is
zooming in, but the jet is much faster and will disappear in the sky.

;Intro sequence

titleCut [" ", "BLACK IN"]; titleFadeOut 4
playMusic "Track1"

;Aircraft Position 1
_camera = "camera" camCreate [9626.16,10062.31,6.00]
_camera camPrepareTarget Aircraft1
_camera camPrepareFOV 0.600
_camera camCommitPrepared 0
@camCommitted _camera
_camera cameraEffect ["internal","back"]

showcinemaborder false

;Aircraft Position 2
_camera camPrepareTarget Aircraft1
_camera camPreparePos [9657.99,10121.22,1.04]
_camera camPrepareFOV 0.500
_camera camCommitPrepared 30
@camCommitted _camera

8.4 - The first scene

259259

Aircraft Position 1:

Aircraft Position 2:

It’s possible to add much more effects to this scene, but the basics should be explained
well enough. The script only needs a command to be ended, so the lines below need to
added to the bottom of the script:

The scene is fading out slowly and the music is fading down as well. The camera will be
deleted after 6 seconds and the player will get the control back and can start to play. It's
quite important to make sure that the music track that is faded down will get faded up
again. If you forget to do this and want to use the music again later in the mission, it wont
be audible.

6 Fademusic 0

titleCut ["", "BLACK OUT"]; titleFadeOut 4
~6

player cameraEffect ["terminate","back"]
camDestroy _camera
~1

playMusic " "
0 fadeMusic 1
exit

C
h

ap
ter 8

One also has the possibility to hang the camera on a vehicle, so that the vehicle is
pursuing the object. Its possible to add the camera at any position of the vehicle, but the
vehicle needs to be generated first. In this example we are using a car which has been
named “Car”.

260

;Kamera erzeugen
_camera = "camera" camCreate [0,0,0]
_camera camSetTarget Auto
_camera camSetPos [0,0,0]
_camera camSetFOV 0.700
_camera camCommit 0
@camCommitted _camera
_camera cameraEffect ["internal","back"]

; Position of camera in/at/about the vehicle
_car = Auto

;Position of camera (front/back/inside)
_dx = -6

;Position of camera (left/right/inside)
_dy = 0

;Highness of Camera (below/above/inside)
_dz = 2

#LOOP
;The following two blocks actually have to be defined in one single line, but
;this is not possible here:
_camera camSetTarget [(10 * sin (getdir _car))+(getpos _ car select 0), 10*cos
(getdir _car)+(getpos _car select 1), (getpos _car select 2)]

_camera camSetPos [(getpos _ car select 0) + _dx * sin (getdir _car) - _dy * cos
(getdir _car), (getpos _car select 1) + _dx * cos (getdir _car) + _dy * sin
(getdir _car), (getpos _car select 2)+_dz]

_camera camSetFOV 0.900
_camera camCommit 0
@camCommitted _camera

;We set a condition to end the script. In this case: If our car, gets closer than
;50 metres to the unit (P1), so the scene will be ended.

?P1 distance Auto < 50 : goto "Ende"
goto "LOOP"

#Ende
P1 cameraEffect ["terminate","back"]
camDestroy _camera
exit

8.5 - Patching the camera on an vehicle/unit

One has the possibility to define several kinds of screen text. To do this, just use following
syntaxes:

titleCut ["Hallo", "Black Out"]; titleFadeOut 6

titleText ["Test", "White In"]; titleFadeOut 6

cutText ["Test", "Black In"]; titleFadeOut 6

The list below explains the possibilities individually:

Plain - Text appears in the middle of the screen

Plain Down - Text appears at the bottom of the screen

Black - Blending out from the screen image to black

Black Faded - Blending out from the screen image to black as well

Black In - Blending back from black to the screen image

Black Out - Blending screen image into black

White In - Blending from white to screen image

White Out - Blending screen image into white

Linebreak
To insert a line break into the text just use the code \n at the part of the text which has to
be broken. If one is using this code twice (\n\n), one will get an empty line and so on.

titleText ["Paraiso\nOne day later…", "Black In"]; titleFadeOut 6

The result can be seen in the image below:

Composetext
There’s a further possibility besides default hint which is called composetext. This one
can be freely defined when it comes to color and the font size. The Syntax below needs
to be written in one single line!

hint composeText [parsetext format
["<t size='1.2' align='center' color='#ff0000'>Hallo %1</t>", name player]];

Similar this Syntax merged with Text from a Stringtable.csv:

hint composeText [localize "STR_RA_M01V03",parsetext format
["<t size='1.2' align='center' color='#ff0000'>%1</t>", name player]];

261

C
h

ap
ter 8

8.6 - Text- and blending effects

This chapter will explain how to use camera effects in Sequences. Night vision goggle
effect and special Sound effects are possible also.

Disable cinema border
The following command is deactivating the cinema border so that a full screen view is provided.

showCinemaBorder false

Night vision camera
To use the camera in Night vision mode following command is needed:

camUseNVG true

A more bright or darker ingame Graphic
The following command becomes the ingame graphic more bright or even darker

setAperture 1 - bright
setAperture 200 - dark

Let the camera say something’s
The camera is to be handled similar to an Object, so the needed command is he formally
known Say-command

_camera say "Sound1"

Disable environment sound
To disable the sound of birds or other sounds next to the music within the intro or other
sequences just use the following command.

enableEnvironment false - Disables environment sound
3 fadeRadio 0 - Time fadeRadio radio volume
4 fadeSound 0 - Time fadeSound sound volume
2 fadeMusic 0 - Time fadeMusic music volume

The outermost well designed environment and the permanent loading and erasing of
textures and Objects can cause incorrect displaying and jerking of the environment when
the cameras position chances too fast. The System and the Engine are not able to follow
that fast so those issues can sometimes happen.

To avoid these problems the Preload commands are provided. These commands are
loading Objects, Positions, sounds or whatever into the RAM. Up to the command the
camera will move to its next defined position so far this area or the used Objects has
already been preloaded. Now a few Pre-load Syntax examples.

preloadObject - is preloading an Object (see the example)

preloadCamera - is preloading a Camera position (s. example)

262

8.7 - Camera effects

8.8 - Preload objects and positions

preLoadMusic Track1 - is preloading a music track
preloadSound Sound1 - is preloading a special sound
preloadTitleRsc ["BIS", "Plain] - is preloading a resource
preloadTitleObj ["BisLogo", "Plain] - is preloading a resource pic. an Object

The following two examples are describing the usage of preLoadObject and
preLoadCamera. All files will get preloaded within the first example. The script will go on
so far the preloading process has finished. The value _preload will be deleted automatically..

_preload = [] spawn {waitUntil {preloadCamera position Name}}
@scriptDone _preload
terminate _preload

The same will happen at preloadObject. The object Name will be load with a distance of 5.

_preload = [] spawn {waitUntil {5 preloadObject Name}}

It’s quite interesting to get map animation executed within the briefing. It’s also possible
for the camera to move to differnt marker positions on the map. It’s further possible to
delete or edit markers and much more.

The following image will explain how to create such an Animation script. It’s recommended
to have the briefing and the radio disapear. It’s further recommended to define 2 blocks
for each marker as shown in the example. Block1 = zoom in, Block 2= zoom out. When
these Blocks have been finished the script will go to the next Position.

263

C
h

ap
ter 8

8.9 - Executing map animation

forceMap true ;// Is forcing the map on the screen
showPad false ;// Is hiding the briefing
disableUserInput true ;// Is disabeling the user input

;// Zoom in marker Pos1 within 3 seconds to value 0.1
mapAnimAdd [3, 0.1, markerPos "Pos1"] ;// Is adding an animation
mapAnimCommit ;// Is executing an animation
@mapAnimDone ;// Is waiting until the animation has finished
~2

;// Zoom in marker Pos1 within 1 second to value 1
mapAnimAdd [1, 1, markerPos "Pos1"]
mapAnimCommit
@mapAnimDone
~1
;// Finishing mapanimation and reset original conditions
forceMap false ;// Closing the map
mapAnimClear ;// Is deleting values of MapAnimAdd
showPad true ;// Is reforcing the map on the screen again
disableUserInput false ;// Enables userinput again
exit;

Chapter 9
- Scripting -

This chapter will explain some of the scripting operations in more detail. This chapter will
allow you to better understand more of the scripts that are shown in this guide and even
allow you to be able to define some of your own small or large scripts.

9.1 The Variable 265
9.2 Logical Values 266
9.3 Logical Operators 267
9.4 The While-Do-Loop 268
9.5 The Counter 268
9.6 If-Then-Else 268
9.7 The Delay 269
9.8 Random 269
9.9 WaitUntil 269
9.10 The Brackets 270
9.11 The Semicolon 271
9.12 The Array 271
9.13 Basic knowledge about Functions 274

264

C
h

ap
ter

9

A variable value is a changeable value. It can be a word or even a number depending on
its intended use. There are two possible variables, the global and the local variable. While
a global variable will work everywhere, a local one will work for a special thing only. Here
is an example with variables:

Heli1 flyInHeight 120

If a user is placing a unit on the map, the units needs to be named in a special way. MyHeli
for example. It's not possible to name a unit with a number (1234) only, but it's possible
to merge a name with a number. Heli1 for example.

Local Variable
A local variable can be recognized by its underline right in front of the variable. If the user
defines a script, this variable will work in this script only in a localized section. So its
possible to use this variable for several sections of the script without giving out more
variables (for example, using the same variable for one or several units).

In the current example, we are using a script which was defined in a way so that 3 units
called Name1, Name2 and Name3 have to execute an animation. But it might be that
there are some more units on the map which shall be called on by that script, so its
necessary to use a local variable. One has to define only one script and needs to use a
local variable for a huge number of units.

The names which have to be executed by the script need to be defined as an Array:

[Name1,Name2,Name3] exec "script.sqs"

If the script gets started, so every single soldier of the 3 units will get allocated the local
variable _man. Every single unit will get asked individually. The script would look like:

The unit with, the global name Name1 i.e., got the local variable _man allocated and will
execute the given command:

265

;Animation script

;Unit is getting local value allocated
_man = _this select 0

;Unit is executing animation
_man playMove "Animation";

;Script will exit
exit

9.1 - The variable

Global Variables
Next to the local variables exists global variables. While a local variable will only work in
a special predefined section, a global variable will work for a much wider section, as the
name already implies. An example: If the user is renaming a unit so the name is a global
variable, the name can be used only one time. If one wants to rename another unit with
the same name, an error message will appear. The unit which has been named can be
now be called by scripts, triggers, and waypoints - it's global.

Fixed variables
Some values are already used by the game, these are:

Player - The Player
This - Unit or object
Time - Time of day in the game
_time - Local time
_x - An element out of an Array
_this - Local unit
Pi - 3,14…

Conditions of variables
It’s possible to allocate conditions or values to a variable. Its also possible to set them on
true or allocate them a text string.

Name1= true - Variable is receiving the value TRUE

Name1= 44 - Variable is receiving a value

Name1= "MyText" - Variable is receiving a text string

Name1= [Value1,Value2] - Variable is receiving a array value

Saving variables
It's also possible to save variables at any time to call the again later

saveVar "Variablenname"

A logical value is a special condition of a value. One can compare it with an on/off switch.
If a variable has been set to true, a predefined action will get started. If the same action
gets set back to false, this action will be ended. It's also possible to define true as 1 and
false as 0.

true - Will be executed when a condition has been executed

false - Will be executed when a condition has not been executed

266

9.2 - Logical values

C
h

ap
ter

9

The list below explains some of the generally known and important operators.

AND - A logical AND to combine two or more operations

OR - Logical OR enables a controlled selection of two or more variables

NOT - A logical NOT enables a controlled use of two or more variables

! - Can be used as NOT as well

? - IF

: - DANN

If - IF

Then - THEN

Else - ELSE

Exit - Stops the execution of a script

Do - Do (see While Do)

- Headline (Label) Note: Never set a semicolon behind a Label!

Goto - Goto

> - Bigger than

< - Smaller than

<= - Smaller or equal

>= - Bigger or equal

== - Equal

~ - Delay in seconds (~3)

; - Will be ignored by the script

@ - Pauses the script and waits until the condition which follows next,
has been executed

ForEach - For each unit. Example {_x reveal Player} foreach List Area1

ThisList - For each unit (Side) in a trigger area

Count - Gives the number of existing elements of an array back top the script

Random - Defines a random value

Case - Case
(ex.: case 1 : exit (translated: Is circumstance equal with value1 then exit)

Ceil - Rounding value up. (Ex: ceil 5.25 would be 6 / ceil -5.25 would be 5)

Floor - Roundingvaluedown. (Ex:round5.25wouldbe5/round-5.55wouldbe 6)

Round - Rounding value up/down. (Ex: round 5.25 would be 5 / round 5.55
would be 6)

267

9.3 - Logical operators

268

This loop is going on so long as a is bigger then b. A will always receive the value 1 until
it’s bigger then b, so that the loop can stop. The maximum value for Armed Assault® is
currently at around 100.000.

While {a<b} do {a=a+1}

Translated: Add the value 1, so long a is smaller then b.

If one wants to use a counter in a script, the element value needs to be defined as 0 when
the script or the mission begins. The value 0 will get allocated to the variable counter.
Then the actual counter starts and always adds the value 1 to the local variable _counter
at any cycle. But this will run only so long as the variable _counter is >= (bigger equal) 10,
Then script will end its sequence..

_counter = 0;
#Start
? (_counter>=10) : exit
_counter = _counter+1;
goto “Start”;

This syntax means exactly what it is called: If-Then-Else. An example: IF condition has
been executed, THEN do this, or (ELSE) do this. Here is an example:

IF (a>b) THEN {c=1} ELSE {c=2}

An example: A marker has to be “patched“ onto a unit so long this unit is still alive. If the
unit will be killed, the script will exit.

If Soldier1 is still alive Then place S1-Symbol onto Soldier1, Or (Else) delete S1-Symbol
and leave the script (Exit)

#Start
~0.5
If(alive Soldier1)Then{"S1-Symbol" setMarkerPos getPos Soldier1}

Else{"S1-Symbol" setMarkerType "Empty";exit};
~0.5
goto “Start”;

9.4 - The While-Do-Loop

9.5 - The counter

9.6 - If-Then-Else

269

The delay (written as“~”without quotes) will only be used in SQS-Scripts, while Sleep will
be used in functions only. These orders will be defined as seconds. The script is counting
down the given value and breaks the execution until the value 0 has been reached. When
the count down has been finished the script will go on.

~300 - Script makes a break of 300 Seconds

~random 300 - Generates a random value and pauses the script break

sleep 300 - Is a function. “sleeps” 300 seconds

The order random enables one to generate a random value. It's possible to define a
random value with a variable. That could be such a script:

_start = random 4
? _start < 1 : goto "Start1";
? _start < 2 : goto "Start2";
? _start < 3 : goto "Start3";
? _start < 4 : goto "End";

A value, which has a maximum number of 4, has been generated randomly here and the
script is checking the respective value. The script is jumping now to the respective Label
which was defined with Start or End as shown above

That operator can be used another way as well, for example to place a unit at a random
position inside a building, or to define a value to a delay. The needed syntax could look
like this:

Name1 setPos (nearestBuilding this buildingPos random 10)

or the Delay:

~random Value

The command waitUntil can be used if a special function, condition, or action gets
paused. It's actually like the @ function. The function is waiting until this condition has
been executed.

_Value = 0;
waitUntil {_Value = _Value +1; _Value >= 100};

9.7 - The delay

9.8 - Random

9.9 - Waituntil

C
h

ap
ter

9

Certain kinds of brackets are to be used while scripting which have all their own
properties. The following variants are different to each other:

[] - Array (closer explanation in Chapter 9.12)
{ } - Code (curly bracket)
() - Mathematical Operators
" " - Textstrings

ArmA® gets the information from the brackets which it needs to combine all the code
together.

{} – Code
If some features are to be told to the engine in a special way like a code string, they need
to be defined in a special kind of bracket, the curly bracket. A good example for such code is:

{_x moveInCargo Heli1} forEach Units GAlpha

All members of this group (GAlpha) should already start inside the chopper (Heli1) when
the mission begins.

() - Mathematical Operators
Mathematical operators will be processed by using normal brackets (). That is exactly the
same as the basic mathematic calculating rules related to brackets and the basic
arithmetics called PEMDAS (US), BEDMAS (Can) or even BODMAS (UK, Austr. aso).

(a+b)*c

Example:
In the following example we want a unit to move to a special position inside of a building.
An example about what we are telling the engine: Unit move to House plus position
value. To make sure that the engine knows that the position belongs to the house, so
we’re using the brackets as shown below.

_Man move (_House buildingPos 120)

If there wasn’t the brackets around ArmA® wouldn’t understand: Unit go to House AND
then to a further position called 120. So the engine doesn’t know that the position
belongs to the house and an error message would appear.

“Textstrings“
One can define text strings by using quotes (" "). It´ alternatively possible to use ' This can
be found regular on the @ key. Quotes can also be interlaced. Here is an example of the
use of a map click.

onMapSingleClick "Leader Alpha1 move _pos; Player say ""Hello"""

270

9.10 - The brackets

C
h

ap
ter

9

The semicolon means separation or even break in the script language. So it’s possible to
divide 2 or more command lines from each other (as you always do in the Init Line of a
unit). It’s further used to tell the engine that the current line has come to an end and the
engine has to go on with the next line. So generally each script- or even function line has
to be ended with a semicolon. It’s further needed to know that signs which are located
behind a semicolon will not be recognized by the engine. That enables the scripter to
define descriptions right behind a complicated script or function. An example:

One has the further possibility to divide commands from each other used in functions.
One can see an example syntax, which contains two semicolons which are dividing the
included code from each other.

Example = {private["_a","_b"]; _d=[getPos player,_this select 0]; _b = 100};

Attention! If one is using a delay like ~10 or the label #, so no semicolon has to be used
right there, otherwise the script wont work correctly anymore!

One has the possibility to hand over values to a script or functions by using an Array. That
provides the advantage that the same Array can be used very flexible for several units or
similar stuff, while only using the local variable. So a function only has to be defined one
time but can be used much more if needed. It’s not fixed up to a special project or a special
unit, but for a lot, one can see an Array as a list of several values which are collected within
brackets to prepare them for a further usage.

Array
An Array consists out of squared brackets []. So all what will be listed within these brackets
can get handed over to the script. Here’s an example:

[Value1, Value2, Value3, Value4] exec "script.sqs"

271

;Animation Script

;Unit gets local value allocated
_man = _this select 0
playSound "Move";

;Unit is executing a animation
_man playmove "Animation";

;Leaving script
exit

9.11 - The semicolon

9.12 - The array

The defined values within the Array will now be processed within the script as follows:

Because we want to handle with local values within our script, a local variable, based in
the Array, needs to be allocated to the respective value in the script. I think that this will
become clearer now in the next example:

An object shall get created by using a script. The object we want to get created in this
case is an empty BMP2, which has to be spawned on an invisible Heli H named Point1.
This BMP should be aligned into direction 100 and also shall have a predefined fuel value
of 0.5. All the other things which actually have to be defined as well within this script are
not to be focused here right now. So at first the Syntax with it’s defined Array:

["BMP2", Point1, 100, 0.5] exec "script.sqs"

Now in this script the values are getting a local variable allocated out of this Array. Those
ones have been turned over as follows:

"BMP2" receives the local variable value _Object
Point1 receives the local variable _StartPos
100 receives the local variable _Azimut
0.5 receives the local variable _Fuel

You can see very clearly in the bottom of the script that these local variables are now used
in the script. The advantage is now that this script has been written one time but can be
used as often as needed with different parameters. The following Syntax can also be used.
The only difference is the Random command which defines a random value between 0
and 1. That now becomes an Object, a helicopter in this case, created close to the position
of the player.

["AH1W", Player, 100, random 1] exec "script.sqs"

272

_Value1 = _this select 0
_Value2 = _this select 1
_Value3 = _this select 2
_Value4 = _this select 3

_Object = _this select 0
_StartPos = _this select 1
_Azimut = _this select 2
_Fuel = _this select 3

_Vehicle = "_Object" createVehicle position _StartPos;
_Vehicle setDir _Azimut;
_Vehicle setFuel _Fuel;

exit;

C
h

ap
ter

9

Getting random values out of an Array
One has the possibility to get a random value automatically selected out of an Array by using
the following command.This value could be used for somethings special later in the mission.

_array = [47,73,78,85,101,103];
_Pos = _array select (random (count _array)-0.5);

The following example will explain it more: The unit Soldier1 has to be moved onto a
random position within the hotel by using the setUnitPos-value out of the call Array. But
only the positions located in the first floor and predefined in the script have to be
considered.

[Soldier1, "Middle", Hotel] exec "script.sqs"

The system is selecting a value out of the script array and moves the unit to the desired
position in the hotel. Please check Chapter 5.61 to rename the building, because we’re
working here with an Object on the map

273

_Unit = _this select 0
_UnitPos = _this select 1
_House = _this select 2

_array = [47,73,78,85,101,103];
_BPos = _array select (random (count _array)-0.5);
_Unit setPos (_House buildingPos _BPos);

_Unit setUnitPos _UnitPos;

exit;

Functions have already been used in OFP resistance as well. At first they were recognizable
as their different file format, which is actually not called SQS but SQF. So it actually hasn’t
changed a lot with Armed Assault®. The classic function with the file format SQF still exists
with the file format called SQS used in OFP.

As explained in Chapter 2.7, so the function with the file format SQF is basically an
enhancement of the faulty script Syntax called SQS. But it’s needed to tell that it isn’t
replacing the scripts at all. The SQS Syntax still exists where the SQF Syntax is founded on.

BIS has adjusted the possibilities of functions and scripts for Armed Assault®. So a lot of
new script-commands and amendments now exist for the Control Structures. So known
SQF-Syntax Variants from OFP have clearly been advanced. And this is where is starts to
get confusing.

Some of the new commands expect a special kind of syntax as some of the old ones do
too. If you are using the Exec command you must be using the OFP script syntax. Labels
and Goto loops can further been used and the script can be exited every time just by
using the command exit.

With new SQF scripts each statement has to be finished with an semicolon ; and while the
usage of code no more in quotes " " but curly brackets { }. The quotes are being used now
by the strings.

OFP Example:

"_x addWeapon ""Binocular"" " foreach units group player

ArmA Example:

{_x addWeapon "Binocular"} foreach units group player;

Functions don’t contain no delays no labels and no Goto loops, but while-do and if-then-
else constructions. ArmA® also brought some new commands like Switch, Do or Case.
Those command Constructions are also called Control Structures. So at this point I refer
to the official Wiki of BIS.

http://community.bistudio.com/wiki/Control_Structures

274

9.13 - Basic knowledge about functions

C
h

ap
ter

9

A function has the job to effect a solution quick and efficient, so it consist regulary out of
a short control sequence, while a script can be much more longer depending of its usage.
Functions are often called out of scripts to allocate a value to a variable, evaluate values
respective files or just calculate somethings. An example would be:

- recalculating the distance between 2 persons,

- pick out all Group leader out of a mass of units,

- find out the most known enemy unit,

- allocate special weapons to special units,

- search special elements of an Array or change it randomly

It happens quite often that a function is resending a value back to the script.
Explained more accurate, many functions has especially been written, to give a value
(the also called Return) back to the script. That doesn’t work with a script. Functions are
against scripts nearly always usable independently of Add-ons or Missions. Once they
have been feed with information so they will deliver their results immediately while many
scripts were made for a special reason only.

Functions are offering the advantage that they can be preloaded while the mission is
loading. They will be saved within the Engine so that they can get called so far they are
needed.

They are much moiré faster available than a script and will be handled by the engine with
a much higher priority. Ideally functions are to be load from out an init.sqs or Init.sqf.

If one wants to preload the functions while the mission is loading so they need to be
named with a variable name at first. That enables one to call these functions again later.

Then the System knows:

NameOfVariable = Result of the preloaded SQF

The Syntax to load the functions:

SearchLight = compile preprocessFile "Searchlight.sqf";

SearchLight is the Variable which was used while the function was called (as explained
above) so SearchLight stands now for the solution respective the whole content of the
functions…or better…

SearchLight is now the function!

275

It’s important to make sure that the variable names (i.e.: SearchLight) are not similar with
command names which are already used in ArmA®. In example for a position-function:

Position = compile preprocessFile "Position.sqf";

That would affect an error message right now, because the word Position is an ArmA®
command name. So it’s really quite important to select the names carefully!

If one wants to recall his functions later in the mission, so the Call-Command is always to
be used.

_variable = [Data] call SearchLight

Because this function has been preloaded resp. precompiled so they can be used
immediately if its needed. The advantage against the script is that functions which have
been precompiled mustn’t get interpreted line by line.

But its also possible to get some duties of functions done which are actually defined as a
script. That’s why it’s usual as well to use the known While-Do or If-Then-Else aspects. But
mostly it’s clearer to hand over these duties to a function to keep them out. In this case
functions have to be called by the command Call. That enables one to go on with the
results of the functions right in the next line of the script.

As I already explained so the SQF-Syntax for ArmA® has been expanded a lot and was
advanced with many more possibilities. It’s possible now to use it for scripts which will
receive the file format SQF of course. Within the scripts, as usual in ArmA®, code blocks are
still defined within curly brackets { } and statements will still be finished with a semicolon ;.
It’s further possible now to define time delay within SQF scripts, but in this case not by
using the already known tilde key ~ but the command Sleep. Scripts which are used by
the SQF file format have to be called by using the Spawn or even execVM commands.

If a script is intend to be used several times, so it’s recommended to preload this script as
a function by loading it into the RAM to become it executed much faster.

Preload scripts:

ExampleScript = compile preprocessfile "ExampleScript.sqf";

Call scripts:

[Data] spawn ExampleScript;

276

C
h

ap
ter

9

The Command execVM can be used for scripts which will be called only sometimes. That’s
why the script will not get preloaded.

[Data] execVM "ExampleScript.sqf";

If a script has to get called right out of the Editor, so its unfortunately needed to change
the script call a little bit. It looks similar to a function call although the script will not give
any values back.

Call a script out of the Editor (precompiled):

Variable = [Data] spawn ExampleScript;

or (not precompiled):

Variable = [Data] execVM "ExampleScript.sqf";

The word Variable is just a place keeper which is currently avoiding error messages. One
can see the Variable as a dummy and also name it as well. But one can also just cut it by
using d.

d = [Data] execVM "ExampleScript.sqf";

Scripts which are defined within the SQF file format are just ending so far the interpreter
has coming to its end. The exit command is not only unnecessary but also improper, cause
this is just a command to be used in SQS file formats scripts only. But should the case
become true that its needed to cut off an SQF file format script so following construct is
to use:

if (ConditionOfAbort) exitWith {};

But it’s still possible to become code executed which is defined within the curly brackets
right behind the exitWith Command. Example:

if (ConditionOfAbort) exitWith {Player sideChat "Finish!"};

277

Chapter 10
- Dialogs und Resources -

This chapter will introduce you to the most important parts of dialogs. Because my
knowledge is limited on dialogs, I will explain to you only the most necessary things to
offer you the ability to implement an image, a text, or even a small video as a highlight
to your mission. All contents are expandable of course. So the following 11 sub-chapters
will provide you a little basic knowledge to pimp up your mission.

To work with dialogs, basic knowledge dedicated to the Description.ext and and how it's
handled is needed. So you need to have patience and be smooth while working with the
Description.ext. To forget a semicolon or a bracket always creates a horrible effect even
for professional users, so CTD´s (Crash to desktops) might happened often if the user
doesn't take enough care about it. Don’t give up if it doesn’t work within the first few tries.

10.1 What actually is a dialog? 279
10.2 Base definitions (constants) 280
10.3 Basic classes and subclasses 283
10.4 The font styles 286
10.5 Fading in a graphic 287
10.6 Fading in a text 288
10.7 Fading scope views 289
10.8 An own tactical map 291
10.9 Defining a button 292

10.10 Defining a Frame 294
10.11 The video sequence 297

278

C
h

ap
ter

10

Dialogs are images, text or buttons which can be freely defined by the user for a mission
or even for mission features as well. It enables the user to get graphics, text or additional
scope views displayed on the screen while the mission or a sequence is running. It´ll
become much more interesting when it comes time to create buttons or drop down
menus which shall also cause some things to happen.

The Editor is a good example to show the possibilities of dialogs, because nearly the
whole Editor is consisted of dialogs. The Windows surface is a good example as well. The
basics are the same as used in ArmA®.

The image below is showing a drop down menu which is used within the Editor to select
and insert groups on the map

The possibilities have been expanded since Operation Flashpoint®. So it's possible now to
create and define dialogs that are much more appealing. For example, the use of color,
shadows or even flying letters as used in the Armed Assault® Credits.

Dialogs are a very useful and very nice tool to give some more features to a mission, but
they're are also hard to create, so this chapter will introduce you a little to the dialogs and
by watching the video sequence you will also get a small overview about what is possible
and what is not.

It´s very important to work disciplined and accurately while using dialogs. These are
defined within the Description.ext and only a small missing thing may cause a crash to
desktop (i.e.: caused by missing or misplacing a semicolon or a bracket).

The font has been defined to be flying on the image below.

279

10.1 - What actually is a dialog

It’s not possible to avoid creating some Basie Definitions. Here are some which are already
used and hidden deep inside the ArmA® engine. But some times these can be redefined
for your own requirements to be further saved under a new name.

In some cases it's not needed to transfer all definitions into the Description.ext and as
long the user is satisfied with the basic definitions, nothing further is needed. See fading
in graphics or fonts, you’ll note that no definitions were made there. But to be safer than
safe, it's possible to transfer all definitions into the Description.ext to avoid a CTD (Crash
to desktop) or something like this.

But what are Defines actually? Well, defines are just a kind of place keeper. There´re values
already defined by the game engine which are covering every Define individually. As long
as these defines are used for their respective reason, it's not necessary to define your own.
But if one wants to define his own font style, it´s really possible. An example: The values
true and false can also be defined as 1 for true and 0 for false.

The following definition should be existing in the ArmA® engine:

#define false 0
#define true 1

These definitions are also to be seen in the unpacked Mission.pbo in Armory.intro and
then within rscCommon.hpp. A variety of things can be done with just these two defines.

Define actually means to define something. So one is defining something as he wants to
do. So that could be something like this...

Booleans - Basic value like true and false
Sounds - Sounds for Buttons etc.
Elements - Frames, Surfaces, Buttons, List boxes aso.
Fonts - The font styles
Colors - The colors

...or even much more. One has many possibilities for his own definitions, which should be
limited sometimes of course.

It´s easier to understand when it says to assign a word for a value, because it's easier to
keep a word then a sign in mind. An example: A definition of a users font color. Colors
like black and white are not as bad to keep in mind as colored values. But if one wants to
get a special blue or a special red color, it's easier to create your own definition.

As one can see the values of black and white are pretty simple:

#define Color_White {1, 1, 1, 1}
#define Color_Black {0, 0, 0, 1}

But it is different to another color, i.e. blue:

#define My_Blue {0, 0, 0.7, 1}

280

10.2 - Basis definitions (constants)

C
h

ap
ter

10

Excursion
Colors will be mixed out of values. All values between 0 and 1 are to be used only. The last
value represents the transparency

{red, green, blue, Transparent}

End of Excursion!

Define-Name
As one can see in the Array (define) of the color blue above, a custom name has been
given as a define name (My_Blue). So it´s possible to use custom names. But it´s generally
recommended to keep the default names but to create whole new (your own) ones later.
That might help avoid getting in trouble while using these definitions later in the mission.

The following is a very small list of some default defines including their names and values:

#define CT_STATIC 0
#define CT_BUTTON 1
#define CT_EDIT 2
#define CT_SLIDER 3
#define ST_TITLE_BAR 32
#define ST_PICTURE 48

It doesn't make much sense to use these names now. So one should select his own names
to avoid having overlaps.

#define Murray_Title ST_TITLE_BAR + ST_CENTER
#define Murray_Font "Zeppelin32"
#define Murray_Sound {"\ca\ui\data\sound\mouse2", 0.09, 1}

A custom name has been allocated in the first example. This one got the values
ST_Title_Bar and ST_Center allocated which is also possible.

So I will stop here right now to explain the defines! One knows now that it's possible to
use custom names and values and one also knows how to create custom colors. An
example of some default defines can be seen on the next page which can be found again
in many official missions.

281

Default Defines
The following is a selection of default defines out of Armed Assault®. It´s recommended
to extract the Description.ext from some a official ArmA-Mission to get the defines right
from there. If one has already got template, it can always be used again.

Both tables above are actually representing one single table. But this is unfortunately not
possible to handle right here, so I separated them into two images.

At first there are the Control Types and then the Static Types listed. But the order is not
very important. As one can see there is a basic kind of orderliness . A special font style
has been defined at the end by using FontM, so self created defines can simply be added
to this one, so that makes it easier to see where the default defines are ending and the self
created defines are beginning

282

// Control Types

#define CT_STATIC 0
#define CT_BUTTON 1
#define CT_EDIT 2
#define CT_SLIDER 3
#define CT_COMBO 4
#define CT_LISTBOX 5
#define CT_TOOLBOX 6
#define CT_CHECKBOXES 7
#define CT_PROGRESS 8
#define CT_HTML 9
#define CT_STATIC_SKEW 10
#define CT_ACTIVETEXT 11
#define CT_TREE 12
#define CT_STRUCTURED_TEXT 13
#define CT_CONTEXT_MENU 14
#define CT_CONTROLS_GROUP 15
#define CT_XKEYDESC 40
#define CT_XBUTTON 41
#define CT_XLISTBOX 42
#define CT_XSLIDER 43
#define CT_XCOMBO 44
#define CT_ANIMATED_TEXTURE 45
#define CT_OBJECT 80
#define CT_OBJECT_ZOOM 81
#define CT_OBJECT_CONTAINER 82
#define CT_OBJECT_CONT_ANIM 83
#define CT_LINEBREAK 98
#define CT_USER 99
#define CT_MAP 100
#define CT_MAP_MAIN 101

// Static Styles

#define ST_POS 0x0F
#define ST_HPOS 0x03
#define ST_VPOS 0x0C
#define ST_LEFT 0x00
#define ST_RIGHT 0x01
#define ST_CENTER 0x02
#define ST_DOWN 0x04
#define ST_UP 0x08
#define ST_VCENTER 0x0c
#define ST_TYPE 0xF0

#define ST_SINGLE 0
#define ST_MULTI 16
#define ST_TITLE_BAR 32
#define ST_PICTURE 48
#define ST_FRAME 64
#define ST_BACKGROUND 80
#define ST_GROUP_BOX 96
#define ST_GROUP_BOX2 112
#define ST_HUD_BACKGROUND 128
#define ST_TILE_PICTURE 144
#define ST_WITH_RECT 160
#define ST_LINE 176

#define FontM "Zeppelin32"

//My Defines

#define Murray_Title 32 + 64
#define Murray_Font "TahomaB"

C
h

ap
ter

10One needs basic classes and subclasses for opening new dialogs or to use resources. The
basic things are defined within the basic class while the specific things are defined within
the subclasses. The Sound classes shall serve here as a parallel example which has to be
defined within the Description.ext as well.

The basic classes and subclasses are present here as well. The basic class CfgSounds is
defining that it’s about a sound, while the subclass (Sound1) contains the respective
definitions for Sound1.

And this is exactly the same for the classes which are needed for dialogs and resources.
There are many more possibilities for dialogs and resources than there are for sounds.

Basic Class
Now the following is a basic class which contains basic things like types, styles,
backgrounds, font colors, font styles and font sizes. This basic class RscText can now be
used as a kind of base for all following subclasses.

Once the base was founded, all additional subclasses can be adjusted individually. It's
possible now to define a larger and different colored font style for Font1 then used for
Font2, or define a different position on the screen.

283

class CfgSounds
{

sounds[] = {
Sound1

};

class Sound1
{

name = "Sound1";
sound[] = {"\sounds\sound1.ogg", db+0, 1.0};
titles[] = {};

};
};

class RscText
{

type = CT_STATIC;
idc = -1;
style = ST_CENTER;
colorBackground[] = {0, 0, 0, 0}; // Background Color
colorText[] = {0, 0, 0, 0}; // Text Color
font = "TahomaB"; // Typeface
sizeEx = 0.080; // Font Size

};

10.3 – Basic classes and subclasses

284

Subclass
The subclass itself is separating now again. One can say that she has a further subclass
inside. To avoid confusion we call it a component. The following example will show a
structure.

One has to take care about the order of curly brackets, which are providing a better
overview. So one can always see what belongs to what. The following example, also used
in Chapter 10.6, explains how to define a script resource. One can see here the defined
basic class RscText and the lower located subclass Font1.

Description.ext

// Main Class
class RscText
{

};

// Subclass
class RscTitles
{

[List of Ressources]

class MyRessource
{

[List of Components]

class MyComponents
{

};
};

};

// Basis Class

class RscText
{

type = CT_STATIC;
idc = -1;
style = ST_CENTER;
h = 0.05;
colorBackground[] = {0, 0, 0, 1}; // Background Color
colorText[] = {0, 0, 0, 1}; // Text Color
font = "TahomaB"; // Typeface
sizeEx = 0.040; // Font Size

};

// Next Side

C
h

ap
ter

10

As one can see in the basic class, RscText {0,0,0,1} (black) has been used as font color. But
as shown on the image below, the font color is white. That’s why the color white {1,1,1,1}
has been defined in the subclass Fontbutton1 for Font1. But there are many more things
defined in the subclass as one can see.

A very important line is:

class FontButton1 : RscText

One can see now that the definition of RscText will be allocated to the class
Scriptbutton1. So everything which was predefined in the basic class RscText will be
used here and could actually get lost within the subclass without s problem.

The font color and the font style were redefined for Fontbutton1 in the example above.
So that’s why the lines were shown there.

So this image will now be called as follows:

TitleRsc ["Font1", "PLAIN"];

285

// Subclass
class RscTitles{Titles[]={"Font1"}; // List of Ressources: “Font1, Font2,. . .”

class Font1
{

Idd= -1;
MovingEnable=False;
Duration=10; // Fade Duration
FadeIn=1; // Fade Time
Name=" Schrift1"; // Name
Controls[]={"FontButton1"}; // List

class FontButton1 : RscText
{

ColorText[]={1,1,1,1}; // Font Color
Font="Bitstream"; // Typeface
Text="OPERATION SNAKEBITE"; // Text
x = 0.30; // X-Axis
y = 0.50; // Y-Axis
w = 0.50; // WindowWidth
h = 0.05; // Window Height

};
};

Some font styles are already predefined in Armed Assault®, which can be selected by the
user depending on his or her plans. One has the possibility to define one of these font
styles in the Defines or in the respective class resp. subclass

The list below will show a little selection of the existing fontstyles:

Arial Bold
Bitstream
TahomaB
Zeppelin33
Zeppelin33Italic
Zeppelin32

Here are two examples:

TahomaB

Zeppelin33Italic

The font style Bitstream with a size of 0.04 will be allocated to the resource RscText in the
following Description.ext example.

286

10.4 – The font styles

class RscText
{

idc = -1;
type = CT_STATIC;
style = ST_LEFT;
colorText[] = {1, 1, 1, 1};
colorBackground[] = {0, 0, 0, 0};
font = Bitstream;
sizeEx = 0.04;

};

C
h

ap
ter

10

287

To get a simple graphic faded in, a definition of Defines within the Description.ext is not
quite needed and can get lost. The only thing which has to be defined in the
Description.ext is a class that can be used by the engine.

A good example is a graphic which will get faded in right at the beginning of a mission
or something similar. One only needs to define a simple class for the image within the
Description.ext. The example below is showing all what is needed to make it work.

The call will be done by:

titleRsc ["Bild1", "PLAIN"];

Description.ext

class RscPicture
{

idc = -1;
type = CT_STATIC;
style = ST_PICTURE;
colorBackground[] = {0, 0, 0, 0};
colorText[] = {1, 1, 1, 1};
font = Zeppelin32;
sizeEx = 0;

};

class RscTitles
{

titles[] ={Picture1};

class Picture1
{

idd=-1;
movingEnable = true;
duration=10; // Fading Duration
fadein=2; // Fade Time
name = "Picture1"; // Name in Editor
controls[]={Picture};

class Picture : RscPicture
{

x = 0.30; // X-Axis
y = 0.50; // Y-Axis
w = 0.40; // Window Width
h = 0.05; // Window Height
text = "pics\picture1.paa"; // Graphic Direction
sizeEx = 0.04;
style=48;

};
};

};

10.5 – Fading in a graphic

288

The definition of custom text can be much more complicated then getting images faded
in. Because additional things like font styles, font size, font color, and the position need
to be defined as well, to list the most important ones.

The basic class has to be defined first, where all the basics will get configured. A custom
subclass is needed each time new text appears on the screen and one can also adjust
each subclass individually. For the first subclass (Script1) a headline with larger and more
colored letters could get defined and for the second subclass (script2) a smaller and white
colored font style could get defined. The needed syntax is:

titleRsc ["Font1", "Plain"]

Description.ext

class RscText
{

type = 0;
idc = -1;
style = 0;
h = 0.05;
colorBackground[] = {0, 0, 0, 0}; // Background Color
colorText[] = {0, 0, 0, 0}; // Text Color
font = TahomaB; // Typeface
sizeEx = 0.080; // Font Size

};

class RscTitles{Titles[]={"Font1"};

class Font1
{

Idd=-1;
MovingEnable=0;
Duration=10; // Fade Duration
FadeIn=1; // Fade Time
Name=" Font1"; // Name
Controls[]={"Control01"};

class Control01: RscText
{

ColorText[]={1,1,1,1}; // Text Color
Font="TahomaB"; // Typeface
Size=0;
Text="OPERATION SNAKEBITE"; // Text
x = 0.30; // X-Axis
y = 0.50; // Y-Axis
w = 0.40; // Window Width
h = 0.1; // Window Height

};
};

10.6 – Fading in a text

The regular scope views of the weapons can be used for sequences like intros, outros and
others, but the binocular view is the most simple to create, the only thing which is needed
is the following syntax:

cutRsc ["Binocular", "PLAIN",0.1] or titleRsc ["Binocular", "PLAIN",0.1]

All the other scope views need to be predefined with in the Description.ext. Once the
definition has been made, one has the possibility to select this resource just by selecting
the respective entry in the Effects category of a Trigger under Type/Resources. Ideally a
script will work also.

The list below will show a small selection of the usable scopes with their respective source
path. But be careful, some weapons are using the same scope. That’s why not all weapons
have been listed right here, but a small selection only.

Scope Types

C
h

ap
ter

10

289

Weapon Source

G36 \ca\Weapons\G36_optics

M4SPR \ca\weapons\optika_sniperw
M4 \ca\Weapons\optika_ACOG

M4GL \ca\Weapons\optika_ACOG

SVD \ca\weapons\optika_snpiere

Javeline \ca\Weapons\optika_TOW

Binocular \ca\weapons\optika_dalekohled

Laserdesignator \ca\weapons\optika_SOFLAM

NVGoggles \ca\weapons\optika_night

M119 \ca\weapons\optika_M119

Stryker \ca\Wheeled\optika_stryker_driver
\ca\Tracked\optika_stryker_gunner

BRDM \ca\wheeled\optika_BRDM
AH1ZGunner \ca\air\optika_heli_gunner

\ca\air\optika_AH1Z
Ka50 \ca\air\optika_Ka50_rocket.p3d

Tankdriver \ca\Tracked\optika_tank_driver

Tankgunner \ca\Tracked\optika_tank_gunner

M1A1 \ca\Tracked\optika_M1A1_commander

ZSU Gunner \ca\Tracked\optika_zsu_gunner

ZSUCommander \ca\Tracked\optika_tanke_auxiliary

T72Gunner \ca\Tracked\optika_T72_gunner

10.7 – Fading scope views

290

Description.ext

The defined resource called SNIPER will now get called as follows:

titleRsc ["SNIPER", "Plain"]

If one wants to fade out this resource again later, up to the selection it works by using:

titleRsc ["default", "plain",2] or cutRsc ["default", "plain",2]

#define CT_OBJECT 80

class RscObject
{

type = CT_OBJECT;
scale = 1.0;
direction[] = {0, 0, 1};
up[] = {0, 1, 0};

};

class RscTitles
{

titles[] = {SNIPER};

class SNIPER
{

idd=-1;
movingEnable = false;
duration=10;
name = "SNIPER";

objects[]= {SNIPER};

class SNIPER : RscObject
{

model= "\ca\weapons\optika_SOFLAM";
idc=-1;
position[] = {0,0,0.065};
direction[] = {sin 0, sin 0, cos 180};
up[] = {0, 1, 0};

};
};

C
h

ap
ter

10

291

The possibility to insert custom images offers many possibilities. A tactical map, secret
plans, a mug shot or much more than a simple logo could get realized now. The following
example will deal with the tactical map. The way to get it called should be up to the liking
of the user, whether it’s a radio trigger, an action menu entry or whatever. But the syntax
to call the effect has to be there:

titleRsc ["MyTacticalMap", "PLAIN"];

Description.ext

As one can see this Description.ext is exactly the same as was used in Chapter 10.5, but
only the values have been changed.

class RscPicture
{

type = CT_STATIC;
idc = -1;
style = ST_PICTURE;
colorBackground[] = {0, 0, 0, 0};
colorText[] = {1, 1, 1, 1};
font = Zeppelin32; //Typeface
sizeEx = 0;

};
class RscTitles{titles[] ={MyTacticalMap};

class MyTacticalMap
{

idd=-1;
movingEnable = true;
duration=10; // Fade Duration
fadein=2; // Fade Time
name = "MyTacticalMap"; // Name in Editor
controls[]={Picture};

class Picture : RscPicture
{

x = 0.10; // X-Axis
y = 0.40; // Y-Axis
w = 0.80; // Window Width
h = 0.05; // Window Height
text = "pics\map.jpg"; // Graphic Direction
sizeEx = 0.04;
style=48;

};
};

10.8 – An own tactical map

292

To define a button is much more complicated then adding a simple image or some text.
The Defines are definitely needed to be used again here and much more as well as you
will note in a few moments. One has unlimited possibilities. But this example is focusing
on a few basics, respectively, one simple default button only.

Description.ext

This script will go on the next page. The frame data for the buttons have been defined
within the first part of the Description.ext. The second part will handle the button itself.

#define CT_BUTTON 1
#define Color_White {1, 1, 1, 1}
#define Color_Black {0, 0, 0, 1}
#define Color_Grey {0.5, 0.5, 0.5, 1}
#define FontHTML "BitStream"

class RscButton
{

type = CT_BUTTON;
style = ST_CENTER;

// Text Definitions
font = FontHTML;
colorText[] = Color_White;
colorDisabled[] = Color_Black;

// Background Configuration
colorBackground[] = Color_Black;
colorBackgroundDisabled[] = Color_Black;
colorBackgroundActive[] = Color_Grey;

offsetX = 0.001;
offsetY = 0.002;
offsetPressedX = 0.003;
offsetPressedY = -0.003;
colorFocused[] = Color_Black;

// Shadow Configuration
colorShadow[] = Color_Black;

// Rahmen Configuration
colorBorder[] = Color_White;
borderSize = 0.02;

// Sounds
soundEnter[] = {"\ca\ui\sound\pageopen", 0.1, 1};
soundPush[] = {"\ca\ui\sound\pageclose", 0.1, 1};
soundClick[] = {"\ca\ui\sound\offbutton", 0.1, 1};
soundEscape[] = {"\ca\ui\sound\offbutton", 0.1, 1};

};

10.9 – Defining a button

C
h

ap
ter

10

293

The button has been defined here right now. He will receive the frame data from the
predefined RscButton which is located in the first part of the Description.ext. This button
can get called now simply by using this syntax:

ok = createDialog "DemoButton"

This syntax can be used everywhere to call the button. A simple radio trigger is a good and
easy way to test the button.

The Action line could look different. The reason why it was shown that way is to
demonstrate that the text of the button can change when it gets clicked. By default the
commands are used there which has to be executed by using this button.

A further way about how the action line could look like:

action = "closeDialog 0; [] exec ""script.sqs"" ";

As one can see so the action line is pretty much freely definable. It enables one to get
things caused or something else. But it’s important to take care about things like brackets,
signs and quotes, etc.

The command closeDialog 0 will finally close the dialog

Now it´s possible to decorate this button with a additional frame or much more. This
should just be a simple example to an explain how to create a button.

class DemoButton
{

idd = 100;
movingEnable = false;
controls[] = { My_BUTTON };

class My_BUTTON : RscButton
{

idc = 100;
sizeEx = 0.018;
text = "Click Me!";

// Position
x = 0.4;
y = 0.4;

// Size
w = 0.15;
h = 0.04;

// Action
action = "ctrlSetText [100, ""Thanks!""]; hint ""TEST"" ";

};
};

The following example will deal with the way about how to create a simple Frame. This
Frame will include a special feature which is represented by a small text. But at first the
Defines have to be defined again within the head which will be reordered later.

Description.ext

294

#define CT_STATIC 0
#define Color_White {1, 1, 1, 1}
#define Color_Black {0, 0, 0, 1}
#define FontHTML "BitStream"
#define ST_FRAME 64

class RscText
{

Idc = -1;
Type = CT_Static;
Font = FontHTML;
ColorBackground = Color_White;

};

class My_Frame : RscText
{

Style = ST_FRAME;
x = 0.22;
y = 0.12;
w = 0.40;
h = 0.20;

};

class RscTitles {Titles [] = {"Frame1"};

class Frame1
{
Idd= -1;
MovingEnable=False;
Duration=10; // Fade Duration
FadeIn=1; // Fade Time
Name="Frame1"; // Name

Controls[]={"FontFrame1"}; // List

class FontFrame1 : MY_Frame
{
ColorText[]= Color_Black; //Font Color
Text="OPERATION SNAKEBITE"; // Text
SizeEx = 0.030;
};

};

10.10 – Defining a frame

In game it will look like this. The Frame will get called by using:

titleRsc ["Frame1", "PLAIN"];

The final highlight to this dialog chapter shall be the way to create your own video
sequences. Such a sequence will get created by using a bunch of single frames, so lot of
single images and a small script. But the Description.ext has to be prepared of course,
like always while working with dialogs.

Description.ext

C
h

ap
ter

10

295

10.11 – The video sequence

class RscPicture
{

Idc = -1;
Type = 0;
Style = 48;
ColorBackground[] = {0, 0, 0, 0};
ColorText[] = {1, 1, 1, 1};
Font = BitStream;
SizeEx = 0;

};
class Videodialog
{

Idd = -1;
MovingEnable = true;

Controls[] = {Picture_1};

class Picture_1 : RscPicture
{
idc = 200; // The ID
x = 0.0; y = 0.0; w = 1.0; h = 1.0; // Size and Position
text = "video\frame1.jpg"; // Source
size = 0;
};

};

Once the Description.ext has been defined, a script is still needed which will call and
control the sequence. The script looks as follows:

Video.sqs:

As one can see some effects were used here as well. So the sequence will fade in slowly
because of the Titlecut definition. Additionally to this, music will be played also. The video
dialog will get created at the same time as the images are getting started. But for this,
some additional explanations.

_x - Will be used for the implanted counter. So long as the
value is smaller than 150, the loop will always be re-
plicated. 150 is the number of used images, which are
saved in the folder Video, but much more could be used also.

_delay - The speed of getting the images played can be adjusted
here. If the value will be changed to 1/12, the images
will run slower and a stop motion picture effect appears.
The value 1/48 makes the images run much faster.

video\frame%1.jpg - All the images are saved within the folder Video,
which are named Frame1, Frame2,…
In this example 150 images were used. So if one
wants to use more, the script just has to be adjusted.

296

playMusic "ATrack8"

TitleCut [" ", "BLACK IN"]; titleFadeOut 4

_video = createdialog "Videodialog"

_x = 1
_delay = 1/24

#Loop
ctrlSetText [200, format ["video\frame%1.jpg", _x]]

~ _delay
_x = _x + 1
? _x < 150 : goto "Loop"

closedialog 0

TitleCut [" ", "BLACK IN"]; titleFadeOut 4
exit;

C
h

ap
ter

10

The images resp. frames
Once the scaffolding has been created, just the content is missing. As already mentioned,
single images need to be used. The length of the sequences defines itself by the number
of images. Special freeware tools can be downloaded which enables one to extract single
images out of a whole movie. But I wont give some links or tell their names here for legal
reasons.

Depending on the project the user wants to create, it might be that a ton of images will
be used. In the example script around 150 images were used, although the sequence has
a total length of a few seconds. So the user should really think about the reason why to
use such a feature.

There’s also the possibility given to resize the images again, so that only a small part of the
screen is covered by the video sequence. For example, the Action hud or an info video
or something similar.

But if one wants the whole screen to be covered by the video, the images also need to be
saved in a respective resolution. For example, 512x512 Pixels. But make sure not use too
big files. That will make the total size of the mission too huge at the end of the whole
mission project.

Folder
It is recommended to create your own folder where all the images will be saved because
saving all images right into your Mission root folder would be very unprofessional. In this
case the folder was named video. This is the path:

video\frame%1.jpg

Finally, a small image which represents the named and numbered images.

The Engine is replacing the value %1 with the next highest number. But it’ll work only by
using the correct syntax. The script would look like this (see left hand picture).

ctrlSetText [200, format ["video\frame%1.jpg", _x]]

Chapter 5.66 contains some self explaining syntaxes of this. That should provide enough
to get a handle on this.

So now, just one thing is missing:

And Action!

297

298

Chapter 11
- General Informations -

This chapter, which is also the last one, will explain some of the general parts of the game.
E.g. To create and use mod folders, the use of addons in your missions or what you should
do before releasing your mission to the public and last but not least the Nato Alphabet
which is always recommended to know as an ArmA® soldier.

11.1 Own profile 299
11.2 The ArmA cheats 301
11.3 The MOD-Folder 302
11.4 The use of addons 303
11.5 The missions release 304
11.6 The ArmA.rpt 305
11.7 The NATO Alphabet 306
11.8 The ranks and their badges 307
11.9 The Squad.xml 308

11.10 The Start Parameters 311
11.11 Key combinations, tips and tricks 313

C
h

ap
ter

11

299

Your profile is where all stored game saves and the saved Editor Missions are all basically
located.

C:\My Documents\ArmA\User\Missions

Armed Assault® automatically stores your user profile into the system drive where your
windows operating system is located which is usually the C:/ Drive. This can be bad in
some ways which I will explain below.

Armed Assault® automatically creates the necessary folders on your operating system
drive. Unfortunately, if a virus or something else bad happens to your PC and nothing
works anymore (worst case), Windows would have to be reinstalled. All the missions, game
saves, ideas and all the hours of work would be gone; basically your whole profile.

So if ArmA® is not installed on the system partition you have the possibility to save the
profile directory in the ArmA® folder of your choice. To do this a shortcut to the ArmA.exe
is needed first.Then hit right mouse button and select the properties. Then just change
the already given path to:

D:\ArmA\Arma.exe -profiles=D:\ArmA\ -name=Username

The path still needs to get modified to your settings for what ever you like best. Additional
parameters could get used also:

-window - Will run ArmA® in a Window only
-nosplash - Will run ArmA® without the introduction screen (fast run)

So the modified line would look like this:

C:\ArmA\Arma.exe -nosplash -window -profiles=D:\ArmA\ -name=Mr-Murray

By using the above line the profile will get called from the profile folder in

D:\ Drive\ArmA Folder

and also the game would get started in windowed mode and without a splash screen.

Tip:
If you only want to mission edit, it’s recommended to get ArmA® run in windowed mode,
so it’s easier and even faster to switch between the game and the scripts without the
worry of a crash to desktop.

11.1 – Own profile

Username.ArmAProfile
The Profile folder contains a file called Username.ArmAProfile, where all settings of the Player
is stored in. Therefore belongs the content listed below (the most important things only)

- Graphic settings (Brightness, Gamma, Shadow, Shading etc.)
- Sound settings
- Key combinations
- Mouse settings
- Last played SP Missions
- Last played MP Missions
- Last played Campaign Missions
- Selected Campaign
- Multiplayer settings (Filter, etc.)
- Degree of difficulty
- User defined degree of difficulty
- Own Identity (like in Description.ext)
- Active Missions keys
- Active Vehicle keys (armory)
- Blood (on/off)

This file can be opened quite simply with the text editor. So you have the possibility to
change the settings right there and then.

ArmA.cfg
A further important file is the ArmA.cfg. Direct System settings are located in there, things
like Screen resolution and RAM also.

winX=0; - Screen Position X-Axis
winY=5; - Screen Position Y-Axis
winW=1024; - Screen resolution X-Axis
winH=746; - Screen resolution Y-Axis
winDefW=1028; - Screen resolution relative to X-Axis
winDefH=746; - Screen resolution relative to Y-Axis
FSAA=2; - Anti Aliasing
HDRPrecision=8; - HDR
lastDeviceId="4318,661,107156578"; - contains all information
localVRAM=527429632; - Graphics card RAM Store
nonlocalVRAM=260046847; - ShaderstoreinRamallocatedbyMotherboard

300

C
h

ap
ter

11

301

The following list of cheats for Armed Assault® are not regular cheats. They are not really
giving an advantage to the player, except for the save game cheat. But there are also nice
features which can be useful in certain situations.

All listed cheats need a special way to become executed. To do this press and hold the left
Shift key and hit the minus key on the Num-Pad, Then enter the code using the
keyboard. If this process was successful a little hint will appear on the left upper corner
which will confirm the code. It´s important to know that no input line will appear to enter
the Code, so you are just typing blind.

CAMPAIGN - This code allows you to unlock all the campaign missions without
having to complete the campaign all the way through so you can
select the missions you want to do. This code must be entered on
the main menu screen.

MISSIONS - To unlock all of the single player missions without completing the
first set type this code in on the main menu screen.

ENDMISSION - This code has to be used within a mission and will only work in single
player. Its pretty self explanatory, once the code has been imputed
the mission will end.

SAVEGAME - This code saves the current game status while playing a SP Mission only.

TOPOGRAPHY - This generates a Map in EMF-Vector Format and stores it the Drive C:\.
This map will be generated if one is changing back to the map next
time. Be careful while using American Keyboards. In this case enter
TOPOGRAPHZ.

FLUSH - Flush refreshed all the Textures and Objects out of the RAM. So for
e.g. when you start to get texture glitches you will use FLUSH to sort
them out.

Unlock a Single player Mission
Single player Missions can get unlocked on the one or other way. But this requires the edit
of the own ArmA-Profile. To do this just change within the own profile folder, open the
file Username.ArmAProfile with Text Editor and enter the not yet saved keys in there.

That all should finally look this way:

activeKeys[]= { "M00", "M01", "M02", "M03", "M04", "M05", "M06", "M07", "M08",
"M09", "M10", "TT01", "TT02", "TT03", "TT04", "TT05", "TT06" };

Once this file will get closed and saved again, so these changes will take effect
immediately.

11.2 - The ArmA-Cheats

The use of Mod Folders offers a better over look while useing Mods and Addons. One has
also the choice which Addons should get loaded as well and which ones not. Some
Addons from the Community are containing corrupted Configs, which will get entered
automatically within the Mission.sqm without really laoding and using this Addon.
Additionally to this, the loading time will increase unnecessarily if all addons are loaded.
Also, most of them are not needed. That’s why the smart ArmA® player is using Mod
folders! Always keep in mind:

Never touch the Addons Folder in the Game directory!!

Mod folder can be used in different ways. A little incitation:

Related to the Mission @MyMission

Related to a Theme @MAPFACT

Related to a Mod @ECP-MOD

Those names are examples only, and one can define them as he wants to do, so they are
variable. If a complete Mod should receive an own Mod Folder so it´s recommended to
use the predefined Name. But even in this case it´s up to the player.

Now all Addons can get loaded right from this folder. A further advantage is that these
Addons can also get offered now for a download to avoid the player having to search too
much for those ones.

Now the player would have the choice, whether he wants to get this or that addon loaded
with the game or not. If he doesn’t want to use some special Addons, so these ones don’t
need to get loaded also. That saves time and performance.

The creation of a Mod Folder
The folder always needs to be created right in the main ArmA® directory. Give him a name
and open it and create a new folder which has to be named Addons. All Addons (pbo
files) have to be stored right in there. The next time ArmA® will get started one can select
now the Addons which should get loaded to use in a Mission or what ever.

302

11.3 -The MOD-Folder

C
h

ap
ter

11

303

The image above shows a screenshot from a directory example. As you can see the @ sign
was placed right before the Folder called Mapfact. That’s the only why to make sure that
the new folder will be placed at the very first position in the directory list. If all additional
Mod folders will get renamed like this, so they will get placed right at the beginning of the
list, which keeps the overview. It´s also possible to use other special signs other than @.
That’s only an incitation

To load a Mod-Folder
If one or more Addons should get launched so there are several ways to do this. The
default way is to use ArmA® shortcuts for your Addons which have an additional line
within the command line. The other way is to use one of the available ArmA® launchers
which can get downloaded on many Community sites. This way is of course the most
elegant and more powerful solution. But now, here´s the Parameter which is needed to
complete the short cut. To add this Parameter to the shortcut just right click on it and add
this part right behind the command line:

-mod=@MAPFACT

Combined with the command line it should look like this:

D:\ArmA\arma.exe -mod=@MAPFACT

To avoid getting confused with several ArmA® shortcuts, so you can rename that one as you
want. In case of the Mapfact Mod a possible name for a short cut would be ArmA-Mapfact.

Addons are a nice feature, expanding ArmA® a lot and are giving a more interesting face
to ArmA® for a long time. So it should be clear that Addons shouldn’t be missed within self
made Missions. But there’s much to take care about which will get explained here right
now.

If Addons are used within a mission watch out for those ones which are not to friendly to
the performance. Many addon builders like to forget that fact and create addons with a
lot of polygons and unnecessarily large textures for parts which are not even seen in
game. Mostly it’s possible to realize that with less polygons and a smaller texture size to
save performance to the machine.

If all the correct Addons were selected editing can get started. But now take care not to
use too many Addons and Mods for only one Mission. The player will mostly need to
search a lot for all these Addons and also download them which often takes a lot of time
and destroys the motivation to go on. After he has downloaded all that stuff very often
follows the disappointment that the mission if it was bad or is just not really playable
cause too many Addons were used.

So always keep in mind....less is more! Not the number of used Addons within a Mission
is the important part, but more the realization, functionality, Story and of course the fun
to play factor!

11.4 - The use of addons

304

If the mission has finally been created with a mental brakedown and some more or less
invested time, the publication is close. Finally we present our work to the public and also
to get some good feedback. But there’re also some things to take care about. It´s not
important whether the mission will be released today or tomorrow, it´s better to use one
further day to test the mission to receive a rational result than a half finished project.

Test, test, test Your mission should get tested for functionality, playability
and fun factor by you, your friends and your acquaintances.

Story and logic The Mission should have a good Story and a logical course.
The player always should know what happens next so they
don’t get lost and bored period. Make it keep it interesting.

The Readme Each mission should include one readme. The readme
should give a little bit of information about the mission, who
created it and what scripts and addons were used in the
mission. If possible working links should be in there as well
for the addons.

Used Addons Ideally a Mod folder would be a great additional feature. But
that’s up to the total size of all used Addons. Use links for
bigger Addons.

The download file At the end pack all the files into a rar or zip and make sure
that these things are included:

the Mission.pbo, one Readme and if possible the Mod-Folder

If you have followed these points, then the mission can get released, and there should´nt
be any barrier for the Mission to become successful.

So now have fun for your first Mission release!

11.5 - The missions release

C
h

ap
ter

11

305

The ArmA.rpt is a Error report file of Armed Assault®. The Engine stores important
information right here. I.e. if ArmA® causes a CTD again (Crash to Desktop), you can try to
figure out why that’s happened. The best reason for a CTD is mostly the Description.ext
which causes errors where some users found themselves back on the Desktop and asking
why that happens. Looking into the ArmA.rpt, sometimes helps to find the mistake.

This file will store among others errors of:

- Missions

- Scripts

- Functions

- Addons

That may be missing signs like quotes or wrong Textures, Models or even Config Mistakes.
But the ArmA.rpt is not only a error report file, It can also be seen as a kind of Log file.
It also stores information like:

- Status changes of Units and Objects

- Status changes of the player

- Multiplayer activities

And lots of more, so it’s the optimal road sign for Errors and more

So if you are close to releasing a Mission, it would always be recommended to check the
rpt whether any Errors are still existing, which are directly or indirectly visible.

It´s further recommended deleting the ArmA.rpt from time to time, especially when it
comes to figuring out a mistake. ArmA® will always recreate that file and locating errors
in the rpt when its´s not new can become messy and a lot of work.

The image below will give a short look inside the saved text.

The ArmA.rpt is located, when one is working with –Profile as explained in Chapter 11.1,
usually in the ArmA® root directory, otherwise you can also find it in:

C:\Documents and Settings\User\Applications\ArmA

No more slot to add connection at De61 (6952.9,8228.9)
Client: Object 8:57 (type UpdatePositionVehicle) not found.
*** Remote: Identity Mr-Murray transferred from 8:98 to 8:120
File update_v1\RscDefine.hpp, line 0: '.100': Missing ';' at the end of line
File update_v1\RscDefine.hpp, line 0: '.120': Missing ';' at the end of line
Updating base class ->Helicopter, by ca\air\config.bin/CfgVehicles/UH60MG/

11.6 - The ArmA.rpt

306

A Alpha

B Bravo

C Charlie

D Delta

E Echo

F Foxtrott

G Golf

H Hotel

I India

J Juliett

K Kilo

L Lima

M Mike

N November

O Oskar

P Papa

Q Quebec

R Romeo

S Sierra

T Tango

U Uniform

V Viktor

W Whisky

X X-Ray

Y Yankee

Z Zulu

11.7 - The NATO Alphabet

C
h

ap
ter

11

307

Now for a list of Ranks used by different NATO Forces. There’re of course many different
Ranks in different armies but that would be definitely too much right now.

Germany USA UK France

Gefreiter
Obergefreiter
Hauptgefreiter
Stabsgefreiter
Oberstabsgefreiter

Private

Private First Class

Private

Lance Corporal

Premiére Classe
Caporal
Caporal Chef

Unteroffizier
Stabsunteroffizier
Feldwebel
Oberfeldwebel
Hauptfeldwebel
Stabsfeldwebel
Oberstabsfeldwebel
Fahnenjunker
Fähnrich
Oberfähnrich

Corporal

Sergeant
Staff Sergeant
Sergeant First Class
Master Sergeant
Sergeant Major

Cadet

Corporal

Sergeant
Staff Sergeant

Warrant Officer Class 2
Warrant Officer Class 1

Officer Cadet

Sergent
Sergent Chef
Adjudant

Adjudant Chef
Major

Aspirant

Leutnant
Oberleutnat
Hauptmann
Major
Oberstleutnant
Oberst
Brigadegeneral
Generalmajor
Generalleutnant
General

Second Lieutnant
First Lieutenant
Captain
Major
Lieutenant Colonel
Colonel
Brigadier General
Major General
Lieutenant General
General/Field Marshal

Second Lieutnant
Lieutenant
Captain
Major
Lieutenant Colonel
Colonel
Brigadier
Major General
Lieutenant General
General/General of Army

Sous Lieutenant
Lieutenant
Capitaine
Commandant
Lieutenant Colonel

Général de Brigande
Général de Division
Général de Corps d´Armee

Général d´Armee

11.8 - The ranks

The Squad.xml is basically made for becoming members of a clan which you can be
identified on the Battlefield. This enables you to allocate your own logo to each member.
So it makes sense when all members of a clan have the same logo (Tag). But even if you’re
not a member of a clan, it’s possible to get a logo, just to get identified yourself. That logo
will always get displayed on the right arm of a unit and any vehicle he boards, as shown
in the image below.

To use the squad.xml, some things are required first. A webserver is needed, where all the
following files can be transferred to. Just create a new directory on your server and name
it as you want. Then modify the files (the ones shown below) and save them in that new
directory.

Needed files
The needed files are:

squad.xml
squad.css
squad.dtd
squad.xsl
squadpic.paa

The URL needs to be noted to put it into a special part of the profile.

http://www.myserver.de/armaxml/squad.xml

308

11.9 - The Squad.xml

C
h

ap
ter

11

This part is the line called Squad URL right in your profile.

Player ID
Each game/player has an individual ID, there’s no 2 of the same ID´s existing. And this ID
is needed within the Squad.xml. Otherwise it won’t work.

The Configuration
The only files which need to be modified is the Squad.xml and the Squadpic.paa. The
other files don’t need to be modified, but they are also very important for the xml to work
and so they also need to be stored onto your webserver

Squad.xml
The actual configuration will be done in the squad.xml. This file is separated into 2
different parts. The upper part is defining the squad, or the clan, while the part below is
only defining the player himself.

<Squad Nick> - Squad shortcut (Clan-Tag)
<Name> - Squad name
<EMail> - Squad contact
<Web> - Squad website
<Picture> - Image (Squadpic.paa)
<Title> - Squad name

It´s important to make sure that this file definitely doesn’t get edited with Excel but with
the Text Editor only!

309

This part defines the player:

<Member ID> - Player ID (see Profile image)
<Nick> - Nick name (Profile name)
<Name> - Name
<EMail> - Player mail contact
<ICQ> - IM-Contact
<Remark> - Notification

When its finally edited the squad.xml looks like this:

Squadpic.paa
The squadpic.paa is the logo which will be displayed later in the profile, on the arm of
the player’s character and also on each vehicle the player boards as driver. But the logo
is not needed, so you could leave it out as well. The name Squadpic is a variable name.
It’s only important to make sure that the image name and the definition in the Squad.xml
are exactly the same.

If you want you can create your own logo with a graphic program like Gimp or a Test
version of Photoshop. Create a new image in TGA Format and define the size which must
be like one of these:

16/16, 32/32, 64/64, 128/128, 256/256

Then create the logo how you want to and save it. In the next step this image needs to be
saved in paa format or PNG format. To do this just get the BIS Tool TextView2 and load
your image right in there, then save in paa/png format, that’s all. Make sure to use the
same name as defined in the squad.xml.

<?xml version="1.0" encoding="ISO-8859-1" ?>
<!DOCTYPE squad SYSTEM "squad.dtd">
<?xml-stylesheet href="squad.xsl?" type="text/xsl"?>

<squad nick="MAP">
<name>Mr-Murray</name>
<email>mr-murray@bossmail.de</email>
<web>www.mr-murray.de.vu</web>
<picture>squadpic.paa</picture>
<title>Mr-Murray</title>

<member id="12345678" nick="Mr-Murray">
<name>Mr-Murray</name>
<email>mr-murray@bossmail.de</email>
<icq>N/A</icq>
<remark></remark>

</member>
</squad>

310

Result
If you press the P-Key later in MP game, whether hosted or dedicated Mission, the
following image will be displayed then.

Template
You can find a downloadable template at:

www.mr-murray.de.vu

But it would have to be adjusted to your needs.

There are endless start-up parameters existing for Armed Assault®, which can be added
to the ArmA.exe or just a shortcut of the ArmA.exe. You can get lots of advantages by
using these parameters. A very good feature is the possibility to run ArmA® in windowed
mode, or to skip the splash screen. The following list will explain the most interesting
parameters, more can be found in the BIS Wiki..

Screen options

-window - Runs ArmA® in windowed mode
-nosplash - Runs ArmA® without a splash screen
-x=Value - Resolution (width)
-y=Value - Resolution (height)

C
h

ap
ter

11

311

11.10 - The Start Parameters

Certain options

-nomap - Runs ArmA® with needed Addons only
-noland - Runs ArmA® without an Island
-buldozer - Runs ArmA® in Buldozer Mode
-init= - init=playMission[, 'M04Saboteur.Sara']
-profiles= - defines the User Folder (-profiles=F:\ArmA\)
-name=Username - Is loading the respective User profile
-noPause - Game is proceeding loading in the background
-maxmem=512 - Maximum RAM Store (MB)
-world=Sara - Runs the respective Island

(Sara=Sahrani, Intro=Rahmadi, Empty=no island)
-mod=@Οrder - Loads the respective Mod folder

Network options

-port= - Port to the Server (Local Host resp. dedicated Server)
-password= - Password to the Dedicated Server
-host - Runs a Host-Server
-server - Runs a Dedicated Server
-connect= - Defines the Server where it has to be connected
-netlog - Activates the network activation log
-cfg= - Selection of a CFG file

Using a Parameter
A parameter has to be added to the ArmA.exe.
Create a shortcut of the Arma.exe, right click
the shortcut and select properties.

Now a window as shown on the right will
appear. The parameters need to get defined
right into the targetline next to the given path,
then save.

A sample parameter:

C:\ArmA\arma.exe -nosplash -nomap

You also have the possibility to create several
shortcuts which can be adjusted individually.

But community tools such as the ArmA-
Launcher saves a lot of time and offers a much
better overlook.

312

C
h

ap
ter

11

313

As in each program, there are some key combinations needed to enable a faster editing
so here are some tricks.

Key Combinations

[CRTL] and [C] - Copy (Units/Objects)
[CRTL] and [X] - Cut (Units/Objects)
[CRTL] and [V] - Paste (Units/Objects)
[Delete] - Deleting (Units/Objects)
[Shift] and [Delete] - Deleting all marked units and objects
[Shift] and [left Mouse Button] - Turning around (Units/Objects)

(press and hold key while moving the mouse)

[Shift] and [left Mouse Button] - Edit unit with waypoint
(press F1, press and hold shift and press left mousebutton)

[Left Mouse Button] - Move unit/object or mark area
(press and hold mousebutton and move the mouse)

[Left] and [right Mouse Button] - Move over the map
(press and hold mousebutton and move mouse)

[Mouse Wheel] - Map zoom in zoom out

Templates
It can be necessary to create a template for your mission. So if you spend a lot of time
building a position, you will then be able to use it again for other missions. If a rough
template was created for every single mission feature you will have the possibility to get
them imported quite fast again for later Missions. You can save a lot of time by working
this way. To do this just create your feature and save it by using a regular editor name like
Temp_Bunker. So you can load it when it’s needed. Use the Key combos shown above to
copy and paste the template from one Mission into the other.

Templates II
If you have created a huge mission it may happen that a great idea suddenly appears to
add a further special feature. Maybe a special kind of fortress or what ever, But if you
created that fortress in the mission when testing it you would have to preview the hole
mission over and over which can be annoying.

So the creation of a Map (template) would be helpful right here. Just build your base or
what ever on a new map and once it has been finished, just save it with regular mission
name. Then go back to the main mission and use the merge function to merge it into the
Main Mission.

11.11 – Key combinations, tips and tricks

A
Description Chapter Page

Action command 5.55 136
Actionmenu entry 6.3 181
Airstrike 6.12 198
Airvehiclecreator 6.13 201
Alert 5.32 119
Animationcommand 5.56 139
Arma.rpt 11.6 305
Array 9.12 271
Artillery 6.7 189
Armament within Multiplayer 7.21 250
Adjusting date and time of day 5.43 123
Assigning ranks 5.76 171
Adding Units/vehicles 1.2 20
Arm and Equip Units 3.3 70
Assigning a target to a unit 5.21 113
Allocate a flag to a flag staff 5.35 120
Adjusting radio menu 5.48 127
Accurate helicopter landing 5.18 153
Adjust height of an Object 5.16 111
Adding Markers 1.7 36
Assigning respective display score in MP 7.9 231
Allocate a call-sign to a group 5.49 128
All about vehicles 5.71 165
Add or remove switchable units 5.37 121
Adjust distance of view 5.41 122
Adding Waypoints 1.5 30
Adjusting the weather 5.42 122
Assigning a target to a unit 5.21 113

B
Description Chapter Page

Briefing 2.13 59
Burning fire 5.36 121
Basic knowledge about Functions (SQF) 9.13 274
Building positions 5.62 148
Brackets (properties) 9.10 270
Backpack 6.4 181

314

Keyword Index

K
eyw

o
rd

In
d

ex

315

C
Description Chapter Page

Camscripting 8.1 255
Capture The Flag 7.17 240
Cheats 11.2 301
Checking of an area 5.26 115
Class Header 7.11 233
Change behaviour of a unit in an area 5.27 115
Create Fire (script version) 5.75 169
Camera effects 8.7 262
Controlling the camera 8.1 255
Camera coordinates 8.2 256
Creating a camera 8.3 257
Camera is fixed on a vehicle or unit 8.5 260
Create a light source (Script version) 5.72 167
Create marker 5.70 162
Create smoke (script version) 5.74 168
Create dust 5.73 167
Creating weapons and magazines 3.21 94
Create waypoints 5.68 159
Counter 9.5 268

D
Description Chapter Page

Dead as condition 5.33 120
Degree of familiarity of a unit 5.29 117
Deathmatch 7.6 227
Delay 9.7 269
Description.ext 2.3 48
Dialog 10.1 279
Distance of two units or objects 5.34 120
Driver/Passenger of a vehicle 5.2 106
Display the speed of a unit 5.9 108
Disable AI units 5.57 144
Deleting units and objects 5.45 124
Defining the Multiplayer Area 7.7 228
Disallow reloading 3.19 93
Damage value 5.24 114
Deleting killed units and vehicles 6.8 194
Defining a death zone 5.25 115

316

Different text displays 5.66 157
Disable environment sound 8.7 262
Dynamic start-points 6.5 185

E
Description Chapter Page

Edit units with allocated waypoints 1.10 40
Eventhandler 5.65 155
Error log file / ArmA.rpt 11.6 305
Escape behaviour of a unit or a group 5.14 110
Empty or locked vehicle 5.1 106
Empty searchlight with light 5.86 177

F
Description Chapter Page

Fired ammo type as text message 3.16 92
Finishing a mission 4.6 101
Friendly forces 5.31 118
Flexible respawn points 7.3 225
Friendly enemy 5.30 117
Flag basic information’s MP 7.16 238
Force the map on the screen 5.40 121
Friendly forces becomes enemy 5.31 118

G
Description Chapter Page

Generate bombs 5.46 126
Generating units and objects 5.45 124
Get in/get out of a vehicle 5.7 108
Generate flares, smoke and explosions 5.46 126
GPS-System 6.2 180
Grafic Formats (Paa/Pac) 2.8 55
Create a group 5.45 124
Group already in vehicle when the mission begins 5.6 108
Getting position displayed 5.64 153
Getting weapon and magazine types displayed 3.15 92
Getting XYZ position displayed 5.64 155

K
eyw

o
rd

In
d

ex

317

H
Description Chapter Page

Height of a unit 5.17 112
House-Patrolling-Script 6.16 205
Hand weapons and static weapons 3.1 64

I
Description Chapter Page

If-Then-Else 9.6 268
Information Text 5.59 144
Init.sqs 2.5 53
Insect script 6.20 215
Indestructible Objects 5.61 145

J
Description Chapter Page

K
Description Chapter Page

L
Description Chapter Page

Load and unload vehicles 3.5 71
Lip-Files 2.11 57
Logical operators 9.3 267
Locked vehicle 5.1 106
Logical values 9.2 266

M
Description Chapter Page

Mission accessories 4.3 98
MP general information 7.19 247
Moving units, objects, triggers and markers 5.15 111
Merging units and markers 1.9 39
Map animation 8.9 263
Mapclick 6.6 187
Merging units and markers 1.9 39
Mine-Script 6.17 208
Mimics 5.54 135
Missions folder 2.1 42
Mission.sqm 2.2 43

318

Mission name 4.1 97
Mission start 4.2 97
Mission accessories 4.3 98
MP-Description.ext 7.4 226
Missions release 11.5 287
MOD-Folder 11.3 302
Mission appraisal 4.4 99
Mission targets 4.5 99
Move objects 5.16 111
MP score 7.8 229
Moving units, objects, triggers and markers 5.15 111

N
Description Chapter Page

Nato Alphabet 11.7 306

O
Description Chapter Page

Own profile 11.1 299
Object and building classes 3.11 81
Overview 2.12 58
Own sound/music 5.51 129
Oppress player input 5.39 121

P
Description Chapter Page

Paratroopers 6.1 179
Preface information for MPMissions 7.19 247
PBO-file 2.9 56
Plant classes 3.12 88
Primary or secondary weapon 3.18 93
Player related text messages 7.22 251
Public variable 7.18 246

Q
Description Chapter Page

K
eyw

o
rd

In
d

ex

319

R
Description Chapter Page

Ranks 11.8 307
Running patrol, drive or fly 5.13 110
Respawn positions 7.2 224
Respawn different kinds 7.5 227
Respawn dialog 7.12 233
Random 9.8 269
Read out and display player 5.38 121
Rock classes 3.13 90
Random animation 5.56 139
Random music 5.52 130
Random position mission start 1.9 39
Random weather 5.42 122

S
Description Chapter Page

Saboteur 6.21 216
Scout 6.22 217
Start or stop unit/vehicle 5.11 111
Save or load a unit status 5.28 116
Send a radio message 5.50 129
Speed of a unit 5.8 108
Set identity 5.53 134
Saving a mission 4.7 103
Seagull script 6.19 213
Semicolon 9.11 81
Set velocity 5.58 144
Shell classes 3.10 80
Script (.sqs) 2.6 54
Saving 4.7 103
Suppressing gaming speed constantly 6.9 181
Squad.xml 11.9 308
Start parameters 11.10 311
Stringtable.csv 2.4 51
Stringtable basic values 5.67 158
Stringtable basic values in MP 7.13 234
Sychronize 1.6 35
Searchlight 6.14 203
Sign Classes 3.14 91
Synchronize waypoints and trigger 1.6 35
Slow motion or time sprint 5.44 123

T
Description Chapter Page

Trigger synchronize with waypoint 1.6 35
Trigger insert 1.4 27
Trigger create 5.69 160
Trigger check its area 5.26 115
Trigger merge several areas 5.26 115
Track down enemy units 6.11 197
Text information 5.59 144
Text and blending effects 8.6 261
Time limit within MP 7.8 229
Time Counter 6.15 204

U
Description Chapter Page

User interface 1.1 16
Unit is moving into a building 5.19 112
Unit keeps standing 5.10 109
Unit is moving to its destination 5.12 110
Unit is capitulating itself 6.23 218
Unit has a weapon 3.17 92
Unit classes 3.9 77
Unit in vehicle 5.4 107
Unit/Group already in vehicle 5.6 108
Unit is leaving / joining group 5.20 113
Unit is selecting weapon 5.23 114
Unit turns to another unit 5.22 114
Unit is moving to desired house position 5.63 153
Unit is not allowed to enter a vehicle 5.3 106
Unit is using binoculars 5.77 172
Using ID´s – disable lamps 5.61 145
Units keeps lying or keeps standing 5.60 144
Using own sounds 5.52 130
Use own sound/music 5.52 130
Use of addons 11.4 303
Unit is selecting weapon 5.23 114
Unit turns to another Unit 5.22 114

320

K
eyw

o
rd

In
d

ex

321

V
Description Chapter Page

Vehicle classes 3.7 73
Vehicle weapon classes 3.8 76
Vehicle is waiting for unit 5.6 108
Vehicle respawn 7.14 235
Vehicle respawn (advanced) by Mr-Murray 7.15 236
Variable 9.1 265
Vehicle transport script 6.18 209
Vehicle weapon classes 3.8 76

W
Description Chapter Page

Weapon and ammo crates 3.4 71
Weapon classes 3.2 68
Weapon and ammo crates 3.4 71
Weapon selection in the briefing 3.6 72
WaitUntil 9.9 269
While-Do-Loop 9.4 268

X
Description Chapter Page

Y
Description Chapter Page

Z
Description Chapter Page

114

322

A
Description Chapter Page

Active 4.5 99
Action 5.55 136
AddAction 6.3 181
AddEventhandler 5.65 155
AddRating 4.4 99
AddSwitchableUnit 5.37 121
AddWeapon 3.3 70
AddMagazine 3.3 70
AddWeaponCargo 3.4 71
AddWaypoint 5.68 159
AddMagazineCargo 3.4 71
AIKills 7.4 226
Alive 5.71 165
AllowGetin 5.3 106
AllowFleeing 5.14 110
And 9.3 267
Animate 5.61 145
AnimationState 5.56 139
AssignAsCargo 5.78 172
AssignAsCommander 5.78 172
AssignAsDriver 5.78 172
AssignAsGunner 5.78 172
AssignTeam 5.79 173
AssignToAirport 5.82 175
AssignedVehicle 5.78 172
AssignedVehicleRole 5.78 172
AVGScore 4.4 99

B
Description Chapter Page

BuildingPos 5.62 148

C
Description Chapter Page

Call 9.13 274
CamUseNVG 8.7 262
CanMove 5.81 174
CanFire 5.81 174
CanStand 5.81 174

Syntax Index

Syn
tax-

In
d

ex

323

Case 9.3 267
Ceil 9.3 267
ClearWeaponCargo 3.4 71
ClearMagazineCargo 3.4 71
CloseDialog 10.9 292
CommandTarget 5.21 113
CommandFire 5.80 174
CommandMove 5.80 174
CommandStop 5.80 174
CommandTarget 5.80 174
Compile 9.13 274
ComposeText 8.6 261
Count 9.3 267
CreateDialog 10.9 292
CreateGroup 5.45 124
CreateMarker 5.70 162
CreateMine 3.20 93
CreateSoundSource 5.51 129
CreateTrigger 5.69 160
CreateVehicle 5.45 124
CreateVehicleLocal 5.45 124
CreateUnit 5.45 124
Crew 5.71 165
CutRsc 10.7 289
CutText 8.6 261

D
Description Chapter Page

Damage 5.24 114
Default 1.2 20
DefValueParam 7.8 229
DeleteMarker 5.70 162
DeleteStatus 5.28 116
DeleteVehicle 5.47 127
DeleteWaypoint 5.68 159
Driver 5.71 165
Done 4.5 99
DoFire 5.21 113
DoGetOut 5.47 127
DoMove 5.12 110
DoStop 5.10 109

324

DoTarget 5.21 113
DoWatch 5.22 114
DisableAI 5.57 144
DisableUserInput 5.39 121
DissolveTeam 5.79 173
Distance 5.34 120

E
Description Chapter Page

EnableAI 5.57 144
EnableEnvironment 8.7 262
EnableRadio 5.50 129
EnableReload 3.19 93
Enemy 5.31 118
ExecVM 9.13 274
ExitWith 9.13 274

F
Description Chapter Page

FadeMusic 5.52 129
FadeRadio 5.52 129
FadeSound 5.52 129
Failed 4.5 99
Fire 5.21 113
False 9.2 266
Flag 7.16 238
FlagOwner 7.16 238
Floor 9.3 267
FlyInHeight 5.17 112
Format 5.66 157
ForEach 9.3 267
ForceMap 5.40 121
ForceSpeed 5.71 165
Fuel 5.71 165

G
Description Chapter Page

GameType 7.11 233
GetDammage 5.24 114
GetDir 5.22 114

Syn
tax-

In
d

ex

325

GetMarkerPos 1.7 36
GetPos 5.22 114
GetPosASL 5.64 153
GetSpeed 5.8 108
GlaceAt 5.22 114
GlobalChat 5.50 129
Goto 9.3 267
Group 5.6 108
GroupChat 5.50 129
GrpNull 5.20 113
Gunner 5.71 165

H
Description Chapter Page

HandsHit 5.81 174
HasWeapon 3.17 92
Hidden 4.5 99
Hint, HintC, HintCadet 5.59 144

I
Description Chapter Page

If then else 9.6 268
In 5.71 165
InFlame 5.36 121
IsEngineOn 5.71 165
IsNull 5.71 165
IsServer 7.19 247

J
Description Chapter Page

Join 5.20 113

K
Description Chapter Page

KnowsAbout 5.29 117

L
Description Chapter Page

Land 5.18 112
LandAt 5.82 175

326

Leader 5.79 173
LimitSpeed 5.71 165
List 9.3 267
Localize 5.66 157
Local Player 7.19 247
Local Server 7.19 247
Lock, Locked 5.1 106
LookAt 5.22 114
LoadIdentity 5.53 134
LoadStatus 5.28 116

M
Description Chapter Page

Magazines 3.15 92
MapAnimAdd 8.9 263
MapAnimClear 8.9 263
MapAnimCommit 8.9 263
MapAnimDone 8.9 263
MaxPlayers 7.11 233
MaxScore 4.4 99
MinPlayers 7.11 233
MinScore 4.4 99
ModelToWorld 5.15 111
Move 5.12 110
MoveInCargo 5.2 106
MoveInCommander 5.2 106
MoveInDriverMoveInGunner 5.2 106
MoveInTurret 5.2 106

N
Description Chapter Page

NearestBuilding 5.61 145
NearestObject 5.61 145
Not 9.3 267

O
Description Chapter Page

ObjNull 5.21 113
ObjStatus 4.5 99
OnLoadIntro 4.2 97

Syn
tax-

In
d

ex

327

OnLoadIntroTime 4.2 97
OnLoadMission 4.2 97
OnLoadMissionTime 4.2 97
OnPlayerConnected 7.22 252
OnMapSingleClick 6.6 187
OrderGetIn 5.78 172

P
Description Chapter Page

Player 9.1 265
PlayMove 5.56 139
PlayMusic 5.52 130
PlaySound 5.52 130
Position 5.64 153
PreLoadCamera 8.8 262
PreLoadMusic 8.8 263
PreLoadObject 8.8 262
PreLoadSound 5.52 130
PreLoadTitleRsc 8.8 263
PreLoadTitleText 8.8 263
PreProcessFile 9.13 274
PrimaryWeapon 3.18 93
PublicVariable 7.18 246

Q
Description Chapter Page

R
Description Chapter Page

Random 9.8 269
Rank 5.76 171
Rating 4.4 99
RemoveAction 6.3 181
RemoveEventhandler 5.65 155
RemoveWeapon 3.3 70
RemoveAllWeapons 3.3 70
RemoveMagazine 3.3 70
RemoveSwitchabeUnit 5.37 121
Respawn 7.4 226

328

RespawnDelay 7.4 226
RespawnDialog 7.12 233
RespawnVehicle 7.14 235
RespawnVehicleDelay 7.14 235
Reveal 5.29 117

S
Description Chapter Page

Saving 4.7 103
SaveGame 4.7 103
SaveIdentity 5.53 134
SaveStatus 5.28 116
SaveVar 9.1 265
Say 5.51 129
ScriptDone 8.8 263
SecondaryWeapon 3.18 93
SelectLeader 5.37 121
SelectPlayer 5.37 121
SelectWeapon 5.23 114
Server 7.19 247
SetAccTime 5.44 123
SetAirportSide 5.82 175
SetAmmoCargo 1.2 20
SetAperture 8.7 262
SetBehaviour 1.5 30
SetCaptive 5.30 117
SetCombatMode 1.4 27
SetDamage, SetDammage 5.24 114
SetDate 5.43 123
SetDir 1.2 16
SetFace 5.53 134
SetFace Animation 5.53 134
SetFlagOwner 7.16 238
SetFlagSide 7.16 238
SetFlagTexture 5.35 120
SetFog 5.42 122
SetFormation 1.5 30
SetFormDir 1.2 20
SetFriend 5.31 118
SetFuel 5.71 165
SetFuelCargo 5.71 165

Syn
tax-

In
d

ex

329

SetGroupID 5.49 128
SetIdentity 5.53 134
SetLightAmbient 5.73 167
SetLightBrightness 5.73 167
SetlightColor 5.73 167
SetMarkerBrush 5.70 162
SetMarkerColor 5.70 162
SetMarkerDir 5.70 162
SetMarkerPos 1.7 36
SetMarkerShape 5.70 162
SetMarkerSize 5.70 162
SetMarkerText 5.70 162
SetMarkerType 5.70 162
SetMusicEffect 5.69 160
SetMimic 5.54 135
SetOverCast 5.42 122
SetPos 5.15 111
SetRadioMessage 5.48 127
SetRain 5.42 122
SetRank 5.76 171
SetRepairCargo 1.2 20
SetSkill 1.2 20
SetSoundEffect 5.69 160
SetSpeedMode 5.8 108
SetTargetAge 1.2 20
SetTerrainGrid 5.83 176
SetTriggerActivation 5.69 160
SetTriggerArea 5.69 160
SetTriggerStatements 5.69 160
SetTriggerText 5.69 160
SetTriggerTimeOut 5.69 160
SetTriggerType 5.69 160
SetUnitAbility 1.2 20
SetUnitPos 5.60 144
SetVehicleAmmo 3.3 70
SetVehicleArmor 5.24 114
SetVehicleInit 1.2 20
SetVehiclePosition 5.15 111
SetVeloCity 5.58 144
SetViewDistance 5.41 122
SetWaypointType 5.68 159

330

SetWaypointBehaviour 5.68 159
SetWaypointCombatMode 5.68 159
SetWaypointDescription 5.68 159
SetWaypointFormation 5.68 159
SetWaypointHousePosition 5.68 159
SetWaypointPosition 5.68 159
SetWaypointScript 5.68 159
SetWaypointSpeed 5.68 159
SetWaypointStatements 5.68 159
SetWaypointTimeOut 5.68 159
SetWaypointType 5.68 159
ShowCinemaBorder 8.4 260
ShowCompass 4.3 98
ShowDebriefing 4.3 98
ShowGPS 4.3 98
ShowMap 4.3 98
ShowNotePad 4.3 98
ShowRadio 4.3 98
ShowWatch 4.3 98
ShowWaypoint 5.68 159
Side 5.38 121
SideChat 5.50 129
SkipTime 5.43 123
Sleep 9.7 269
SomeAmmo 3.19 93
Spawn 9.13 274
SpeedIsNull 5.71 165
Stop 5.11 109
SwitchLight 5.61 145
SwitchMove 5.56 139
SwitchCamera 6.22 217

T
Description Chapter Page

This 9.1 265
ThisList 9.3 267
Terminate 8.8 263
TextParam 7.8 229
Time 9.1 265
TitleCut 8.6 261
TitleFadeOut 8.6 261

Syn
tax-

In
d

ex

331

TitleText 5.66 157
TitleParam 7.8 229
TitleRsc 10.3 283
True 9.2 266
TypeOf 5.71 165

U
Description Chapter Page

UnAssignTeam 5.79 173
UnAssignVehicle 5.7 108
Unlocked 1.2 20
Unit, Units 5.6 108

V
Description Chapter Page

ValuesParam 7.8 229
Variable 9.1 265
Vehicle 5.71 165
VehicleChat 5.50 129
Visible 4.5 99

W
Description Chapter Page

WaitUntil 9.9 269
Weapons 3.15 92
WeaponDirection 3.22 95
WeaponHolder 3.21 94
While do 9.4 268

X
Description Chapter Page

Y
Description Chapter Page

Z
Description Chapter Page

332

IMPRINT

Author: Sascha “Mr-Murray” Hoffmann
Website: www.mr-murray.de.vu

Text, layout and design: Sascha Hoffmann
Graphics and design: Sascha Hoffmann
Editorial office: Sascha Hoffmann, Daniel Schönyan, Dan Bolan, Matt Rochelle

English translation: Daniel "Memphisbelle" Schönyan
English editorial office: Dan "Metal0130" Bolan and Matt Rochelle

Publisher: Mr-Murray

Game developer: Bohemia Interactive (www.bistudio.com)

Credits: Memphisbelle, Metal0130, Matt Rochelle, Parvus, Wolle, LowFly,
Placebo, Maruk, Suma, Ivan, Pete, Shadow, Jan Hlavatý, Dslyecxi,
Hoz, Jahve, Planck, RichUK, Q, Raedor, Rastavovich, Vilem,
Jerry Hopper, Deadeye, M-E, Foxhound, C930, Blackland,Vienna,
Marco-Polo-IV, MCPXXL, Silola, Chneemann, Lester, Swat, Pit,
Sgt Ace, SNKMan, Legislator, Imutep, Crowe, Wolf der Kleine,
Berghoff, Al Simmons, Pitti, Sniping-Jack, JörgF, BadAss, Unterfeld,
OneManGang, Flashpoint_K, Kriegerdaemon, Wüstenfuchs,
LockheedMartin$ch, Burns, Simba, LordOfTheFlames, Spinor,
OFPEC-Team, Deadeye, Luemmel, Zenshin, Moses, Hardrock,
TheArmALord, Bolek, Flimmi, Lima, NoFu, Tajin, John Silver,T_D ,
Redfish, Buliwyf, Big X, Teufelsklaue, Clausewitz, Vektorboson,
Cervo, Mandoble, NeoArmageddon, Mondkalb, Colonel Klink,
Woody

Credits Screenshot contest: Marcus-Ergalla, Burns, Stoned Boy, Laggingape, Swat, Xsive,
Woody, Evil Ash, Legislator, Arctic, AlexXx, Blechreiz, Churchill,
Switcher83, Blacktiger

Game version: Game version 1.15

Copyright
©2008 Sascha “Mr-Murray” Hoffmann. All rights reserved. No part of this publication may be reproduced,

stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical,
photocopying, recording or otherwise, without prior permission of the copyright owner.

All resources used in this product as Company names, Names, Logos, Graphics, Trademarks and Product
descriptions are serving for identification applications only. They belong to the only legal owner.

Cover artwork and ArmA® Logo is copyright of Bohemia Interactive® (BIS) and it is used with permission.
©2008 Bohemia Interactive®. All rights reserved.

