Chain of Commands Network Services 2 (CoC NS2)

How the hell does it work?
by kenoxite

DISCLAIMER: | am not and haven’t ever been part of the CoC team, so all the
information presented here is purely based on my own experience and research. That
means that this guide might contain some errors or misconceptions. With that said,
everything | mention here works.

Why use it?
Because:
e Automatically generates and updates a list of all the players in a MP mission
e |t's able to broadcast strings, sides, arrays and multi-dimensional arrays globally, and

virtually any data type including those supported by publicVariable (number, boolean,
object, group)

e Can send data to all, specific clients, all clients or just the server
e Allows you to execute calls or functions sent from the server to clients and viceversa
e |It's able to share global arrays among server and clients
e Reduces the amount of global variables needed for clients in MP
e Eliminates the need of looped scripts and other synchronization methods
Getting it

e The last version can be found here:
http.//www.ofpec.com/forum/index.php ?PHPSE SSID=h0tkc4h997vpefijgfOtcbel21&action
=dlattach:topic=30650.0:attach=5472
If you get it from somewhere else make sure it's version 2.0, not 1.1. The latter should be
avoided, as it's inferior in all aspects.

e Read the included Infro_to_CoC_NS_D2.pdf file, by the main coder of Sinews of War. It's
short and simple, and good to have a general sense of this tool. Note that all his
examples are focused on the exclusive use of fnRemoteCall, disregarding other
methods.

Setting it up
For the addon version:

e NOT NEEDED IF YOUR MISSION USES COC UA: Place the CoC-SERVER logic in the
editor (found in Game Logic -> CoC Ultilities)

For the script version:
e Copy the contents of CoOCNS_2 0_ScriptTemplate.intro to your mission folder. It can be


http://www.google.com/url?q=http%3A%2F%2Fcommunity.bistudio.com%2Fwiki%2FpublicVariable&sa=D&sntz=1&usg=AFQjCNFmBYc4I-ujroOExB2JHMSMCqlwrg
http://www.google.com/url?q=http%3A%2F%2Fcommunity.bistudio.com%2Fwiki%2FpublicVariable&sa=D&sntz=1&usg=AFQjCNFmBYc4I-ujroOExB2JHMSMCqlwrg
http://www.google.com/url?q=http%3A%2F%2Fwww.ofpec.com%2Fforum%2Findex.php%3FPHPSESSID%3Dh0tkc4h997vpefijgf0tc5el21%26action%3Ddlattach%3Btopic%3D30650.0%3Battach%3D5472&sa=D&sntz=1&usg=AFQjCNGnB8Hd3i38HNlyjTJD8Om5VSozKw
http://www.google.com/url?q=http%3A%2F%2Fwww.ofpec.com%2Fforum%2Findex.php%3FPHPSESSID%3Dh0tkc4h997vpefijgf0tc5el21%26action%3Ddlattach%3Btopic%3D30650.0%3Battach%3D5472&sa=D&sntz=1&usg=AFQjCNGnB8Hd3i38HNlyjTJD8Om5VSozKw

found inside the CoC NS 2 zip file.
ONLY IF YOUR MISSION DOESN'T USE COC UA: Place a game logic in the editor and
name it CoC_Server.

Stuff you should know
The official documentation can be found here:
http://web.archive.org/web/20060112070534/http://www.thechainofcommand.com/docs/

Nodes: Nodes are connected sessions, listed in CoC _ClientList. That means that nodes
actually refer to players, except for the case of the server when dedicated, which refers
to a logic instead. Node index 0 is always the server (can be a player or a logic), node
index 1 is the first player client, node 2 the second, etc.

CoC_ClientsReady: Use this to check if CoC NS 2 is fully loaded before executing
anything related to it. You'll probably just use it once, in an init script or somewhere along
those lines.

CoC_ClientList: 2D array listing all connected nodes. There's another equivalent global
var, CoC_PeerList, so you can use whichever you like most. It has this format: [player
object, player name, reserved var, connected]. The server is always at index 0. To
retrieve the player object of the first client you would do something like this:
(CoC_ClientList select 1) select 0.

CoC_ClientChannel: It contains the index of the local node in CoC_ClientList. It's stored
locally, so its value will be different for each machine.

fNSend: Use this to send stuff to specific nodes. Append "NO_NQ" if you want to send it
ASAP, as it avoids the queue, and "NO_DISC" to ignore disconnected nodes.

fNSendAll, fNSendClients and fNSendServer: Use them to send stuff to all nodes,
just the clients or just the server, respectively. All of them share the same syntax and can
use the "NO_NQ" and "NO_DISC" tags.

fNSendGlobal: This seems to be the most optimized function to send data, so use it to
send stuff to all or specific nodes when you aren't sending strings or sides, and if you
don't need the "NO_DISC" and "NO_NQ" tags. Otherwise use either fNSend or
fNSendAll.

fNRemoteCall: Use this to execute calls on all or specific nodes. It only works with
boolean, number, string, array and multi-dimensional array data types, though.


http://www.google.com/url?q=http%3A%2F%2Fweb.archive.org%2Fweb%2F20060112070534%2Fhttp%3A%2F%2Fwww.thechainofcommand.com%2Fdocs%2F&sa=D&sntz=1&usg=AFQjCNG5uKIV_ArHGKUElhpOmxRrf35WPg
http://www.google.com/url?q=http%3A%2F%2Fweb.archive.org%2Fweb%2F20041206145131%2Fhttp%3A%2F%2Fwww.thechainofcommand.com%2Fdocs%2FLIBNETWORK%2FCoC_ClientsReady.html&sa=D&sntz=1&usg=AFQjCNH5KFIkaNh83UqkzkI5iS9LSHuToQ
http://www.google.com/url?q=http%3A%2F%2Fweb.archive.org%2Fweb%2F20041206145131%2Fhttp%3A%2F%2Fwww.thechainofcommand.com%2Fdocs%2FLIBNETWORK%2FCoC_ClientList.html&sa=D&sntz=1&usg=AFQjCNF6zWWVXEKBEXYIKTdidT5_qeWlQA
http://www.google.com/url?q=http%3A%2F%2Fweb.archive.org%2Fweb%2F20041206145131%2Fhttp%3A%2F%2Fwww.thechainofcommand.com%2Fdocs%2FLIBNETWORK%2FCoC_ClientChannel.html&sa=D&sntz=1&usg=AFQjCNGwirIIz0piZtiISqpyUlkOCYuRjQ
http://www.google.com/url?q=http%3A%2F%2Fweb.archive.org%2Fweb%2F20041206145131%2Fhttp%3A%2F%2Fwww.thechainofcommand.com%2Fdocs%2FLIBNETWORK%2FfNSend.html&sa=D&sntz=1&usg=AFQjCNFoBz2RU-WCT2iX5TOp1IbPnOE5GQ
http://www.google.com/url?q=http%3A%2F%2Fweb.archive.org%2Fweb%2F20041206145131%2Fhttp%3A%2F%2Fwww.thechainofcommand.com%2Fdocs%2FLIBNETWORK%2FfNSendAll.html&sa=D&sntz=1&usg=AFQjCNF0MbeFXUY-R9m8GVfwqrECKGXLew
http://www.google.com/url?q=http%3A%2F%2Fweb.archive.org%2Fweb%2F20041206145131%2Fhttp%3A%2F%2Fwww.thechainofcommand.com%2Fdocs%2FLIBNETWORK%2FfNSendClients.html&sa=D&sntz=1&usg=AFQjCNEtNaJveqe6YPM5tS66zUfTVlvuAw
http://www.google.com/url?q=http%3A%2F%2Fweb.archive.org%2Fweb%2F20041206145131%2Fhttp%3A%2F%2Fwww.thechainofcommand.com%2Fdocs%2FLIBNETWORK%2FfNSendClients.html&sa=D&sntz=1&usg=AFQjCNEtNaJveqe6YPM5tS66zUfTVlvuAw
http://www.google.com/url?q=http%3A%2F%2Fweb.archive.org%2Fweb%2F20041206145131%2Fhttp%3A%2F%2Fwww.thechainofcommand.com%2Fdocs%2FLIBNETWORK%2FfNSendServer.html&sa=D&sntz=1&usg=AFQjCNE002lV2TwzAoTf7gRzRGN64wiUGQ
http://www.google.com/url?q=http%3A%2F%2Fweb.archive.org%2Fweb%2F20041206145131%2Fhttp%3A%2F%2Fwww.thechainofcommand.com%2Fdocs%2FLIBNETWORK%2FfNSendServer.html&sa=D&sntz=1&usg=AFQjCNE002lV2TwzAoTf7gRzRGN64wiUGQ
http://www.google.com/url?q=http%3A%2F%2Fweb.archive.org%2Fweb%2F20041206145131%2Fhttp%3A%2F%2Fwww.thechainofcommand.com%2Fdocs%2FLIBNETWORK%2FfNSendGlobal.html&sa=D&sntz=1&usg=AFQjCNEy1DCeL4coVxHR4R9WsWidqG7M7A
http://www.google.com/url?q=http%3A%2F%2Fweb.archive.org%2Fweb%2F20041206145131%2Fhttp%3A%2F%2Fwww.thechainofcommand.com%2Fdocs%2FLIBNETWORK%2FfNRemoteCall.html&sa=D&sntz=1&usg=AFQjCNEz5OShp258F94rMvzFH28E4_kE5g
http://www.google.com/url?q=http%3A%2F%2Fcommunity.bistudio.com%2Fwiki%2Fcall&sa=D&sntz=1&usg=AFQjCNEjBMiawnONXpDymWY5pLJgBm3Bag
http://www.google.com/url?q=http%3A%2F%2Fcommunity.bistudio.com%2Fwiki%2Fcall&sa=D&sntz=1&usg=AFQjCNEjBMiawnONXpDymWY5pLJgBm3Bag

e CoC isClient, CoC_isServer, CoC_isServerClient and CoC_isServerDedicated:
Use them to know if the specific node is a client, a server (without specifics), a listen
server or a dedicated server, respectively. Run the checks either locally or via
fNRemoteCall.

e CoC_PublicArrays: Contains a list of all the arrays publicly shared.

e CoC_NSFunTable: Array containing all the custom functions you want to use in CoC
NS2

There are way more interesting global vars and built-in functions, but those listed here are the
ones | actually found more useful so far.

So, how do | use all this?

You have two main ways to share data. The one you'll probably use more often is by sending
petitions to execute one of the custom functions referenced in CoC_NSFunTable, via INSendAll,
fNSendClients, etc. The other one is by using the public array system. You can also use
fNRemoteCall, although it has more limitations than the both mentioned before.

Custom functions
Before getting into custom functions let me tell you that there's a few built-in ones present
already, like:

e fNPing: Sends a ping request to the specified nodes
e fNPrint: Prints the specified data in the specified nodes. For debugging, mainly

All the ones included are:
"INPing","fNPingr”,"fNCS","fNUP", "fNPrint","fNBlank","fNClearQ","fNCall'. Don't create new
functions with any of those names, or you'll overwrite them and break all this.

For other specific tasks you'll need to create and load the functions yourself and add them to the
CoC_NSFunTable array.

Before anything, you'll need to init the CoC_NSFunTable array if you are using the script version.
It's initialized automatically in the addon one or if you use CoC UA in your mission. Anyway, |
think it's good practice to check if this array exists before touching it:

_null=format["%1", _nullstring];
? (format["%1",CoC_NSFunTable]==_null) : CoC_NSFunTable=[]


http://www.google.com/url?q=http%3A%2F%2Fweb.archive.org%2Fweb%2F20041206145131%2Fhttp%3A%2F%2Fwww.thechainofcommand.com%2Fdocs%2FLIBNETWORK%2FCoC_isClient.html&sa=D&sntz=1&usg=AFQjCNGl1HF5aei0s57yCjrUtlEJ86odsw
http://www.google.com/url?q=http%3A%2F%2Fweb.archive.org%2Fweb%2F20041206145131%2Fhttp%3A%2F%2Fwww.thechainofcommand.com%2Fdocs%2FLIBNETWORK%2FCoC_isServer.html&sa=D&sntz=1&usg=AFQjCNHU0du3sEmPZSkQazR1WL3hQktUYw
http://www.google.com/url?q=http%3A%2F%2Fweb.archive.org%2Fweb%2F20041206145131%2Fhttp%3A%2F%2Fwww.thechainofcommand.com%2Fdocs%2FLIBNETWORK%2FCoC_isServer.html&sa=D&sntz=1&usg=AFQjCNHU0du3sEmPZSkQazR1WL3hQktUYw
http://www.google.com/url?q=http%3A%2F%2Fweb.archive.org%2Fweb%2F20041206145131%2Fhttp%3A%2F%2Fwww.thechainofcommand.com%2Fdocs%2FLIBNETWORK%2FCoC_isServerClient.html&sa=D&sntz=1&usg=AFQjCNEjrwyZxZ8x31E7ZbKhQLRhqj2AZg
http://www.google.com/url?q=http%3A%2F%2Fweb.archive.org%2Fweb%2F20041206145131%2Fhttp%3A%2F%2Fwww.thechainofcommand.com%2Fdocs%2FLIBNETWORK%2FCoC_isServerClient.html&sa=D&sntz=1&usg=AFQjCNEjrwyZxZ8x31E7ZbKhQLRhqj2AZg
http://www.google.com/url?q=http%3A%2F%2Fweb.archive.org%2Fweb%2F20041206145131%2Fhttp%3A%2F%2Fwww.thechainofcommand.com%2Fdocs%2FLIBNETWORK%2FCoC_isServerDedicated.html&sa=D&sntz=1&usg=AFQjCNGTtlGay67MJPQYfO7qF-yf0wHq3g
http://www.google.com/url?q=http%3A%2F%2Fweb.archive.org%2Fweb%2F20041206145131%2Fhttp%3A%2F%2Fwww.thechainofcommand.com%2Fdocs%2FLIBNETWORK%2FCoC_isServerDedicated.html&sa=D&sntz=1&usg=AFQjCNGTtlGay67MJPQYfO7qF-yf0wHq3g
http://www.google.com/url?q=http%3A%2F%2Fweb.archive.org%2Fweb%2F20041206145131%2Fhttp%3A%2F%2Fwww.thechainofcommand.com%2Fdocs%2FLIBNETWORK%2FCoC_PublicArrays.html&sa=D&sntz=1&usg=AFQjCNH_ZICrJAXyE09siwQQfvSnEg3FRg
http://www.google.com/url?q=http%3A%2F%2Fweb.archive.org%2Fweb%2F20041206145131%2Fhttp%3A%2F%2Fwww.thechainofcommand.com%2Fdocs%2FLIBNETWORK%2FCoC_NSFunTable.html&sa=D&sntz=1&usg=AFQjCNHrVFZKkAW4HpeH8UACr6ZdrBXUKQ
http://www.google.com/url?q=http%3A%2F%2Fweb.archive.org%2Fweb%2F20041206145131%2Fhttp%3A%2F%2Fwww.thechainofcommand.com%2Fdocs%2FLIBNETWORK%2FfNPing.html&sa=D&sntz=1&usg=AFQjCNGzbYsYRZgq7E6P51gjI5_dgdArGQ
http://www.google.com/url?q=http%3A%2F%2Fweb.archive.org%2Fweb%2F20041206145131%2Fhttp%3A%2F%2Fwww.thechainofcommand.com%2Fdocs%2FLIBNETWORK%2FfNPrint.html&sa=D&sntz=1&usg=AFQjCNFww6FHh2VQ0d72YgyrD1mwyIzVwQ
http://www.google.com/url?q=http%3A%2F%2Fweb.archive.org%2Fweb%2F20041206145131%2Fhttp%3A%2F%2Fwww.thechainofcommand.com%2Fdocs%2FLIBNETWORK%2FCoC_NSFunTable.html&sa=D&sntz=1&usg=AFQjCNHrVFZKkAW4HpeH8UACr6ZdrBXUKQ

Then you load and add the functions to be used by CoC NS2, like this:

? (format["%1",fPlayAnim]==_null) : fPlayAnim = preprocessFile "fu\fPlayAnim.sqf",
CoC_NSFunTable set [count CoC_NSFunTable,"fPlayAnim"]

? (format["%1",fSay]==_null) : fSay = preprocessFile "fu\fSay.sqf", CoC_NSFunTable =
CoC_NSFunTable set [count CoC_NSFunTable,"fSay"]

? (format["%1",fClientChat]==_null) : fClientChat = preprocessFile "fu\fClientChat.sqf",
CoC_NSFunTable = CoC_NSFunTable set [count CoC_NSFunTable,"fClientChat"]

Those are just examples. You can add any function you want.

Also, note that | make sure those functions aren't defined already. That's to avoid problems when
two script packs which both use CoC NS2 are running together. Otherwise it'd add unneeded
entries of functions to the CoC_NSFunTable array.

Alternatively you could have done this:

fPlayAnim = preprocessFile "fu\fPlayAnim.sqf"

fSay = preprocessFile "fu\fSay.sqf"

fClientChat = preprocessFile "fu\fClientChat.sqf"
CoC_NSFunTable = ["fPlayAnim", "fSay", "fClientChat"]

It actually doesn't matter, one way or the other. But if you want to avoid double entries the former
method is preferred.

What it does matter is to init all that in all clients and that the functions listed in
CoC_NSFunTable are in the same order everywhere, so a good place for that would be in the
init.sqs of your mission.

Public Arrays
You can share arrays publicly, so they can be automatically updated in all nodes and can also be

edited by any of them.

The public arrays are stored in the CoC_PublicArrays global var. It must be initialized manually in
all nodes and all of them must be identical, so a good candidate is the init.sgs.

To init CoC_PublicArrays you’d do something like this:

globalArray1 = ]
globalArray2 = [<stuff>]
CoC_PublicArrays = ["globalArray1","globalArray2"]


http://www.google.com/url?q=http%3A%2F%2Fweb.archive.org%2Fweb%2F20041206145131%2Fhttp%3A%2F%2Fwww.thechainofcommand.com%2Fdocs%2FLIBNETWORK%2FCoC_PublicArrays.html&sa=D&sntz=1&usg=AFQjCNH_ZICrJAXyE09siwQQfvSnEg3FRg
http://www.google.com/url?q=http%3A%2F%2Fweb.archive.org%2Fweb%2F20041206145131%2Fhttp%3A%2F%2Fwww.thechainofcommand.com%2Fdocs%2FLIBNETWORK%2FCoC_PublicArrays.html&sa=D&sntz=1&usg=AFQjCNH_ZICrJAXyE09siwQQfvSnEg3FRg

As you can see, CoC_PublicArrays is actually a reference to the arrays you want to be global.
The arrays themselves can be either empty or not. You can always change their contents later
and broadcast them via fPublicArray.

To add a new array to CoC_PublicArrays after it's been initialized you'd need to do something
like this: [[],{myNewGlobalArray = []; CoC_PublicArrays set [count CoC_PublicArrays,
"myNewGlobalArray"]}] call fNRemoteCall

And to remove one: [[|,{NameOfTheArrayToDelete = nil; CoC_PublicArrays = CoC_PublicArrays
- ["NameOfTheArrayToDelete"]}] call fNRemoteCall

To modify a global array you'd use the built-in fPublicArray function, like this:

oneOfTheGlobalArrays = oneOfTheGlobalArrays - [unusedObiject]
"oneOfTheGlobalArrays" call fPublicArray

This way all the nodes will receive the request to update their respective versions of the
oneOfTheGlobalArrays array with the content of the one of the node that is sending the request.

Examples

Killed EH

The killed eventhandler is local to the computer the unit belongs to. That means that the server
won't be aware of when a player is killed unless some looped scripts and global vars are used
(which can be dozens depending on the amount of players).

CoC NS2 allows to simplify all this by sending the message from the client to the server when
the player is killed, so the server can act accordingly. This is a way of doing so:

e Initialize the CoC_NSFunTable global var:
_null=format["%1", _nullstring];
? (format["%1",CoC_NSFunTable]==_null) : CoC_NSFunTable=[]

e Create a custom function that will serve as a parser for the sent killed EH. For this
example we'll name it fKilled.sqf and will place it in a directory named fu.

The code of the function would look like this:

private ["_unit","_killer"];
_unit = _this select 0;


http://www.google.com/url?q=http%3A%2F%2Fweb.archive.org%2Fweb%2F20041206145131%2Fhttp%3A%2F%2Fwww.thechainofcommand.com%2Fdocs%2FLIBNETWORK%2FfPublicArray.html&sa=D&sntz=1&usg=AFQjCNECtOXXA5Ayn0eQ0AK7-wJegODG1g
http://www.google.com/url?q=http%3A%2F%2Fweb.archive.org%2Fweb%2F20041206145131%2Fhttp%3A%2F%2Fwww.thechainofcommand.com%2Fdocs%2FLIBNETWORK%2FfPublicArray.html&sa=D&sntz=1&usg=AFQjCNECtOXXA5Ayn0eQ0AK7-wJegODG1g
http://www.google.com/url?q=http%3A%2F%2Fcommunity.bistudio.com%2Fwiki%2FOperation_Flashpoint%3A_EventHandlers_List%23Killed&sa=D&sntz=1&usg=AFQjCNECgp_gOo1kgo3Jh1FztTVheeM80w
http://www.google.com/url?q=http%3A%2F%2Fcommunity.bistudio.com%2Fwiki%2FOperation_Flashpoint%3A_EventHandlers_List%23Killed&sa=D&sntz=1&usg=AFQjCNECgp_gOo1kgo3Jh1FztTVheeM80w

_killer = _this select 1;
[_unit,_killer] exec "eh\killed_server.sqs";

Note that we'll be sending the unit and killer vars to a script named killed_server.sqs in
the eh directory, but we could as well run our killed EH code here.

Now we load the function this way:

? (format["%1",fKilled]==_null) : fKilled = preprocessFile "fu\fKilled.sqf",

CoC_NSFunTable set [count CoC_PublicArrays, "fKilled"]

The killed EH should have been added to the player's unit somewhere, like this: this
addeventhandler ["killed", {_this exec "eh\killed.sqs"}

And in killed.sqs we put this:
_unit = _this select 0;

_killer = _this select 1;
[[_unit,_killer],"fKilled"] call fNSendServer

So, when a player client is killed this would happen:

1.

2.

The player's killed EH script would run on his computer, and send a petition to the server
to execute the fKilled function with the _unit and _killer vars passed.

The server would receive the notification and execute the fKilled function, which in turn
would execute the killed_server.sqs script locally

This same system can be used to handle the hit EH, which is also local.

Strings in global variables

Strings are one of the data types not supported by publicVariable. With CoC NS2 we can update
and synchronize its value to all nodes with something like this:

[[,{myStringGlobalVar = "Some text here"}] call fNRemoteCall

By using fNRemoteCall we'll execute the content in brackets in all nodes, including the server.
We could have sent this to specific nodes by specifying the nodes, like:
[[1,4],{myStringGlobalVar =...



While we used a string in this example, this same system would work with global vars that
contain any of the other data types supported by fNRemoteCall (booleans, numbers, arrays and
multi-dimensional arrays).

Notes
Be aware that you won't be able to send objects as parameters with a fNRemoteCall. The call
executed needs the object to be either local to the receiver or known globally.

Something like this, where _unit is defined locally on the server, won't work: [[], "format [{%1 say
%2},_unit,_what]"] call INRemoteCall. By formatting _unit you will actually send the reference of
the unit, not the unit object (the client will try to execute something like WEST 1-1-A:1 say
phraseWhatever, which obviously won't work).

So, if you want to execute something on a unit use a custom function instead, like this:
[[_unit_what],"fSay"] call INSendAll. The fSay function must have been previously added to the
CoC_NSFunTable array, and it would contain something like: _unit say _what;

Alternatively, you could make use of the CoC_ClientChannel and CoC_ClientList vars, as shown
in the examples in the Intro_to CoC_NS_D2.pdffile.

Drawbacks
e CoC NS2 can take a long time to load, particularly for the script version.
e Conflicts with CoC UA in the scripted version if a CoC_Server logic is manually placed in
the editor



