Psychic Productions
MCAR - Game Logics
by Unnamed

revision 1.00

provided with MCAR Beta 2.5
 I Intro / Disclaimer

I will attempt to explain as best I can, the principles behind the MCAR Game Logic System. Why would you want to use them? At there most basic level Game Logics placed in a vehicle cargo slot will return there X,Y,Z position in world coordinates.

If you have more than one attached to a vehicle, you can calculate the differences between these positions to return information about the vehicles position. Game Logics can be attached to any named selection on a vehicle, from the needle on the engine rev counter to the commander’s cupola.

In this document I will use a couple of obvious configurations to demonstrate the process. Lets start with the task that first inspired this system, how to determine the direction and elevation of a gun and turret. Normally in OFP, it is impossible to obtain this info using regular scripting command.

As mentioned above, Cargo proxies return information about there position. So if we attach a couple of proxies to the gun barrel, we should be able to calculate it’s elevation.

[image: image1.png]
Just to illustrate the point, I created my own Game Logics, which show up in the game as small spheres. As in this case the gun is attached to the turret, we can also calculate which direction the turret is pointing.

[image: image2.png]
I’m not going to start taking you through a step by step walk though of O2, especially when someone else has already gone to the trouble:

<http://ofp.gamezone.cz/_hosted/brsseb/>
Once you have read through Brsseb’s tutorials you should be able to reproduce something like this:

[image: image3.png]
Note the two additional Cargo Proxies are highlighted in Red, along with the guns named selection. It is absolutely imperative that you add the cargo proxies in the correct order. The proxies to be used with the MCAR system, have to be the last proxies added to the vehicle. Remember, OFP will populate cargo positions in the same order they where created in O2.

As illustrated above you can create your own game logic to test out your new cargo slots, I have included a basic config to get you started:

	 class CfgPatches { class GLBall { units[]={"GLBall"}; weapons[]={}; requiredVersion=1.90; }; }; class CfgVehicles { class All {}; class Logic : All {}; class GLBall : Logic { displayName = "Game Logic Ball"; model="\GLBall\ball.p3d"; }; };

You don’t need to create your own Game Logic to view your new Cargo Proxies in game, but in the case of the MCAR project it did help to visualise exactly where the missile would be created.

As a quick check you can always add some extra guys to your tanks group, and set them to “In Cargo”:

[image: image4.png]
The above picture highlights one of the limitations of this system. Standard OFP tanks do not have Cargo positions. By adding our two Cargo Proxies to the T72, the menu option “Move In Back” will now be visible in the player’s menu. If you select this option, you will be moved to the first cargo position shown above.

Now this is not a problem for vehicles like the TOW Hummer, as they already have Cargo positions, so the move in back option is already present. I will mention later in this document how we ensure the AI never enters our Cargo Proxies. But suffice to say, if you want to use this method with tanks, they have to have cargo proxies added to the model. Something like:

[image: image5.png]
One final note on the position of our custom Cargo Proxies for the T72 example above, there used only to retrieve the direction and elevation of the gun. So as long as they’re attached to the guns named selection, and are aligned correctly with each other, they can be placed anywhere on the vehicle.

In the case of the MCAR Hummer we also wanted to create our own missiles and calculate the missiles velocity according to the direction of the gun. To reduce the amount of maths involved in the entire process, some care has to be taken to ensure the Proxies are in their optimum positions.

[image: image6.png]
As you can see above, we have positioned the Caro Proxies to be aligned exactly with the gun barrel. This way, the position for the Camcreated missile can be obtain directly from the first proxy without any extra maths.

The second proxy has been positioned one meter from the first, why one meter? Well the difference in the X,Y,Z positions of both proxies corresponds to the difference in X,Y,Z for the missiles required velocity.

So if we want the missile to travel at 50 meters per second, we can subtract Proxy 1’s X position from Proxy 2’s X position and multiply it by 50. This will give us the correct X velocity vector, to be applied to the newly created missile. The same applies to the Y and Z values, saving a load of Trigonometry headaches further down the line.

 II Locking Custom Cargo Proxies

As mentioned above, we need to ensure our MCAR proxies are always in the same position. This way we know exactly which cargo slot positions to base our calculations on. The last thing we want is for either an AI soldier to move into these positions, or the position to be empty. Fortunately OFP populates cargo proxies in the same order they where added to the vehicle. In O2, as long as we ensure our MCAR proxies are the last two added, everything will work ok.

[image: image7.png]
It’s easy enough to fill the last two Cargo slots with our Proxies, although the method is not exactly what I would call elegant.

Basically the Init event of the vehicle is called when the vehicle is first created, but before any of the crew are moved inside. So we can use this opportunity to fill all available slots with Game Logics, then delete all but the last two (Only two Game Logics are required for this application) before OFP adds the vehicles crew.

For MCAR this is handled in PSY_MCAR_createProxyAA.sqf and PSY_MCAR_createProxyAT.sqf, so take a look at the scripts to find out exactly how it’s done.

Now we have our Mcar Game Logics in place, it is impossible for either the AI or the Player to enter these positions. So no AI hovering one meter in front of the gun. Well almost impossible, there are a couple of things left to take care of.

You may be aware that any vehicle suffering enough damage to render it immobile will automatically eject any crew, including our Game Logics. But as you will probably still be able to fire from the damaged vehicle, we need to fix it so our Game Logics can enter the immobilised vehicle.

There are a couple of solutions to this problem. You can either camcreate new Game Logics every time you fire the vehicle. They will remain in there positions long enough to do the maths, but they will eventual be ejected along with the previous Game Logics. Keep doing this and you will create a whole pile of redundant Game Logics lying around the vehicle.

There is an alternative. Dead crew do not get ejected from a damaged vehicle, if the correct option has been set in the config. So using the GetOut event and a bit scripting, you can kill the Game Logics as there being ejected and move them back into position.

Now all you have to do is wait for the vehicle to get repaired and become mobile again. Once it is mobile, just SetDamage them back to life again. With any mobile vehicle using Game Logics, you have to have living Game Logics in as Cargo, dead Logics will be removed by anyone trying to enter there positions. For MCAR this is handled in PSY_MCAR_repair.sqs, so take a look at the scripts to find out exactly how it’s done.

Working Example

The easiest way to describe the entire process is to build the system up from scratch, aren’t we lucky. So as an example I’m going to add working smoke launchers to the M2A2 Bradley.

Why? The model is free thanks to BIS, it’s an easy example to walk through.

The Bradley has two sets of four launchers, just below, and either side of the main gun. As there attached to the turret and have a fixed elevation, we only have to worry about the tanks turret direction, pitch and bank. As this is an example I’m just going to approximate things like grenade velocity, so if it looks ok it’s in.

A quick mention about Height Above Sea Level and Vektorboson’s function. All OFP coordinates returned by GetPos are relative to the terrain they are on and not sea level. So a ball 10 meters above the top of a 500 meter mountain will return the same height as a ball 10 meters above lower ground. This is a problem for the MCAR system. Although a drastic example, the following picture demonstrates why.

[image: image8.png]
As illustrated above, the first sphere (Game Logic) will return a significantly different height than the second. This will play havoc with our calculations. This is where Vektorboson’s function comes in, without his Height Above Sea Level function most of what I do would be useless.

We will cover this in more detail, but it does add an extra function to the calculations so there not going to be as fast as I would like. Lets hope OFP2 will return absolute and relative coordinates.

Back to the smoke dischargers, I’m going to use four (two per launcher) Game Logics for these. You can get away with just two and some extra maths, but I want to keep this simple. We will position the logics at the centre of each launcher. Indicated by the red dots for the first, and the same idea gain for the other one.

[image: image9.png]
I don’t know my way around O2, at least only enough to place Game Logics so there will be better ways of doing it, that’s for sure.

Load up the BIS M2A2 into O2. We will create our first two Game Logic Cargo Slots (GLCS), remember we want our GLCS’s to be the last created in O2. So if your building your vehicle from scratch, make sure you get the real Cargo positions ready first.

[image: image10.png]
Here I’ve selected the launchers and hidden the rest using, Invert and Hide selection options, this will make it much easier to place our Cargo Proxies.

Go to the first LOD, in the case of the Bradley it’s 0.750.

From the top view select create proxy from the menu and name it cargo, O2 would normally give the proxy the correct number. But in the case of the Bradley, the original cargo proxies are located in the View Cargo - LOD. The Bradley carries one driver a gunner and a commander. In addition it can carry 6 passengers as cargo. So the proxies you create in O2 will need to be renumbered from 07 through to 10. Just make sure there are none missing from the sequence.

If numbered correctly, you will see something like these, in both LOD’s:

[image: image11.png]
But lets get back to creating the actual proxies, you can worry about numbering them later.

Create the second proxy, this will appear in exactly the same position as the last. Now still from the top view, select both proxies

Rotate them by clicking on the rotate icon [image: image12.png] and entering the appropriate value of 90.

The reason I suggested creating both proxies on top of each other, was to ensure they always remain correctly aligned. By selecting both proxies before moving them into position, makes it much easier to align them with say a gun barrel. Once you have them located at the first point, simply deselect the first proxy and leave the second selected.

Here we can see both proxies positioned at the centre of one of the smoke dischargers (the first position), this is not rocket science so you don’t have to be exact.

[image: image13.png]
A close up from the top:

[image: image14.png]
Try using the [image: image15.png] buttons to lock different axis, when moving Cargo Proxies. Just undo any unwanted changes. You don’t have to worry to much about alignment in this example, but it’s worth considering when placing our GLCS’s.

So make sure you only have the second cargo proxy selected, and move that to the other end of the launch tube.

[image: image16.png]
You should have something resembling the above for the first launcher. Note I have not bothered to change the Cargo Proxies direction, there is no need to, as we only want their positions.

Add the other two proxies for the second launcher and move these into position. Again the first of the pair goes at the launchers base, and the second at the launchers muzzle.

All being well, and you have all four proxies positioned and ordered correctly, you should have something that looks like this:

[image: image17.png]
And that’s about it for O2, just make sure the new proxies are included in the name selection “OtocVez”. See Brsseb’s gunboat tutorial at the link below, for more info. You need to copy all these new proxies to the correct LOD’s e.t.c, but that’s covered in other tutorials available here <http://ofp.gamezone.cz/_hosted/brsseb/>.

Game Logics & Config.cpp

Normally the M2A2 can carry up to six men as cargo, so it will not matter that the “Move In Back” option is displayed.

So in the Config we need to change:

transportSoldier = 6;

To:

transportSoldier = 10;

10 is the total number of cargo proxies we have in the model, that’s six regular Cargo Proxies and the four we added.

Now compile the addon and see if we can MoveInCargo the spherical Game Logics. I had to use smaller spheres, but there positions look ok. You will either have to move six logics in first to fill the regular cargo slots, or add more men to your group and give them the In Cargo option.

[image: image18.png]
Using spheres you would see something like the above.

One last thing for the config, an Init event. We want to fill these GLCS’s every time the vehicle is created, so we need to call a function. Don’t worry about the content just yet, we will just include the call in the config.

The following should resemble the config we need for our GL Bradley, GLBISM2A2.p3d being the modified object. I have added our own Game Logic class (GLBrad_Logic) to make sure we don’t interfere with any other Game Logics used by the mission designer.

	class CfgPatches { class GLBradley { units[] = {GLBradley,GLBrad_logic}; requiredVersion = 1.91; }; }; class CfgVehicles { class All {}; class Logic : All {}; class AllVehicles: All {}; class Land: AllVehicles {}; class LandVehicle: Land {}; class Tank: LandVehicle {}; class APC: Tank {}; class M113: APC {}; class Bradley: M113 {}; class GLBradley: Bradley { displayName="GL Bradley"; model=\GLBradley\GLBISM2A2.p3d; transportSoldier = 10; class eventHandlers { init = "GL_CreateProxy = loadfile ""\GLBradley\GLcreateProxy.sqf""; [_This Select 0] Call GL_CreateProxy"; }; }; class GLBrad_logic: Logic { scope=0; side=7; cost=1; }; };

MCAR Scripting

The purpose of GL_CreateProxy is to populate our new GLCS with our new Game Logics, to do this it needs some info. It needs to know the total number of Cargo Proxies and when applicable, the number of real proxies (Cargo Proxies that the AI can enter). We pass the vehicle to the function from the config, so filling it up with logics is easy.

GLCreateProxy.sqf

	private ["_vehicle","_logics","_count"]; _Vehicle=_This Select 0; GL_GetLaunch=LoadFile "\GLBradley\GLGetLaunch.sqf"; GL_CheckProxy=LoadFile "\GLBradley\GLCheckProxy.sqf"; VB_CalcH=LoadFile "\GLBradley\VBCalcH.sqf"; _Count=0; _Logics=[]; While "_Count<10" Do { _Logics=_Logics+["GLBrad_logic" CreateVehicle [0,0,0]]; _Count=_Count+1; }; {_x MoveInCargo _Vehicle} ForEach _Logics; _Count=0; While "_Count<6" Do { (_Logics Select _Count) SetPos [0,0,0]; DeleteVehicle (_Logics Select _Count); _Count=_Count+1; };

Again here the value 10, represents the total number of Cargo Proxies. Don’t worry about the three other functions loaded at the start, I’ll get to them. Notice the second loop we have, this deletes the Game Logics we don’t need, freeing up the regular Cargo Positions for the AI.

The next function is a little more complicated, our smoke discharger is going to be activated from the action menu. We want a function that returns the position of both launchers, for when we camcreate the rounds. We want the direction of each launcher, so we can SetDir each round. And finally we want the velocity vectors for each launcher, so we can project the round.

Now we have created our Game Logics and located them in their GLCS’s, we can make some assumptions when we come to the next function. We know the last four Cargo positions will always hold our Game Logics. So a quick call to OFP’s Crew command will return a list off all the crew including our four game logics.

I have tried to make this code easy to follow rather than super efficient, so don’t be surprised if it’s a long-winded approach. Lets go through each parameter to be returned by our function:

	Launchers Positions
	This is just the X,Y,Z position from proxies 8 & 10 (see previous diagram). Again HASL is not relevant here.

	Launchers Direction
	This requires just the X & Y positions of both sets of Logics. As no Height Above Sea Level is required, this is a relatively quick calculation.

	Projectile Velocities
	This is the difference between the first and second Logics X,Y,Z position. Calculated for both launchers. Here we do need to make use of HASL, to avoid variations in the terrain when obtaining the Z positions.

GLGetLaunch.sqf

I will tackle this in sections, hopefully it will be easier to explain:

	_Vehicle=_This Select 0; _Logics=(Crew _Vehicle)-[(Driver _Vehicle),(Gunner _Vehicle),(Commander _Vehicle)];

The first part takes all the units and Logics in the vehicle, and subtracts the Driver, Gunner and Commander, if present. This will leave us with the array _Logics, containing just the Cargo men and Logics.

	_LogicCount=Count _Logics; _LeftStartPos=GetPos (_Logics Select (_LogicCount-4)); _LeftEndPos=GetPos (_Logics Select (_LogicCount-3)); _RightStartPos=GetPos (_Logics Select (_LogicCount-2)); _RightEndPos=GetPos (_Logics Select (_LogicCount-1)); _LeftPos=+_LeftEndPos; _RightPos=+_RightEndPos;

As we know our Game Logics are the last four, we can get the total number in _Logics and find the last four. The positions we extract from these Logics should be self-explanatory. Just remember where working backwards from the first Cargo slots we added.

_LeftPos and _RightPos will be used to determine the position of the camcreated smoke grenade. We make a copy of both arrays here with the +, before we apply the HASL.

	_LeftStartPos Set [2,([_LeftStartPos] Call VB_CalcH)+(_LeftStartPos Select 2)]; _LeftEndPos Set [2,([_LeftEndPos] Call VB_CalcH)+(_LeftEndPos Select 2)]; _RightStartPos Set [2,([_RightStartPos] Call VB_CalcH)+(_RightStartPos Select 2)]; _RightEndPos Set [2,([_RightEndPos] Call VB_CalcH)+(_RightEndPos Select 2)];

Here we get the HASL for each of the four positions, and add it to the Game Logics height above ground. This is one of the areas in my tutorial that sacrifices efficiency for simplicity. There is no need to create an EmptyDetector four times, for each position.

	_LeftDir=((_LeftEndPos Select 0)-(_LeftStartPos Select 0)) ATan2 ((_LeftEndPos Select 1)-(_LeftStartPos Select 1)); If (_LeftDir<0) Then {_LeftDir=360+_LeftDir}; _RightDir=((_RightEndPos Select 0)-(_RightStartPos Select 0)) ATan2 ((_RightEndPos Select 1)-(_RightStartPos Select 1)); If (_RightDir<0) Then {_RightDir=360+_RightDir};

Now calculate the direction of each of the launchers, basic trigonometry with a quick adjustment to convert the direction to OFP style.

The final stage is to calculate the left and right velocity vectors, so we can give our projectile some motion.

	_LeftVel=[(_LeftEndPos Select 0)-(_LeftStartPos Select 0),(_LeftEndPos Select 1)-(_LeftStartPos Select 1),(_LeftEndPos Select 2)-(_LeftStartPos Select 2)]; _RightVel=[(_RightEndPos Select 0)-(_RightStartPos Select 0),(_RightEndPos Select 1)-(_RightStartPos Select 1),(_RightEndPos Select 2)-(_RightStartPos Select 2)];

Just straight subtraction going on here, although the only reason we did the HASL at the start, is for this calculation.

Then pass the results back, note we are sending _LeftPos and _RightPos and ignoring the other positions:

	[_LeftPos,_RightPos,_LeftDir,_RightDir,_LeftVel,_RightVel]

The entire function will look like this:

	Private ["_vehicle","_logics","_logiccount","_leftstartpos","_leftendpos","_rightstartpos", "_rightendpos","_leftdir","_rightdir","_leftvel","_rightvel","_leftpos","_rightpos"]; _Vehicle=_This Select 0; _Logics=(Crew _Vehicle)-[(Driver _Vehicle),(Gunner _Vehicle),(Commander _Vehicle)]; _LogicCount=Count _Logics; _LeftStartPos=GetPos (_Logics Select (_LogicCount-4)); _LeftEndPos=GetPos (_Logics Select (_LogicCount-3)); _RightStartPos=GetPos (_Logics Select (_LogicCount-2)); _RightEndPos=GetPos (_Logics Select (_LogicCount-1)); _LeftPos=+_LeftEndPos; _RightPos=+_RightEndPos; _LeftStartPos Set [2,([_LeftStartPos] Call VB_CalcH)+(_LeftStartPos Select 2)]; _LeftEndPos Set [2,([_LeftEndPos] Call VB_CalcH)+(_LeftEndPos Select 2)]; _RightStartPos Set [2,([_RightStartPos] Call VB_CalcH)+(_RightStartPos Select 2)]; _RightEndPos Set [2,([_RightEndPos] Call VB_CalcH)+(_RightEndPos Select 2)]; _LeftDir=((_LeftEndPos Select 0)-(_LeftStartPos Select 0)) ATan2 ((_LeftEndPos Select 1)-(_LeftStartPos Select 1)); If (_LeftDir<0) Then {_LeftDir=360+_LeftDir}; _RightDir=((_RightEndPos Select 0)-(_RightStartPos Select 0)) ATan2 ((_RightEndPos Select 1)-(_RightStartPos Select 1)); If (_RightDir<0) Then {_RightDir=360+_RightDir}; _LeftVel=[((_LeftEndPos Select 0)-(_LeftStartPos Select 0))*50,((_LeftEndPos Select 1)-(_LeftStartPos Select 1))*50,((_LeftEndPos Select 2)-(_LeftStartPos Select 2))*50]; _RightVel=[((_RightEndPos Select 0)-(_RightStartPos Select 0))*50,((_RightEndPos Select 1)-(_RightStartPos Select 1))*50,((_RightEndPos Select 2)-(_RightStartPos Select 2))*50]; [_LeftPos,_RightPos,_LeftDir,_RightDir,_LeftVel,_RightVel]

We have everything we need now, to create and fire our smoke grenades.

Calling The Functions

For this example I’m just going to add the ability to launch the grenades to the vehicle, no checks or conditions like ammo and reload times. As long as you are in the vehicle, you can activate the script. So just assume I’m launching the following script using the AddAction command.

	_Unit=_This Select 0 _Vehicle=Vehicle _Unit ? !(CanMove _Vehicle) : Exit _Data=[_Vehicle] Call GL_GetLaunch _Shell="SmokeShell" CamCreate (_Data Select 0) _Shell SetDir (_Data Select 2) _Shell SetVelocity (_Data Select 4) _Shell="SmokeShell" CamCreate (_Data Select 1) _Shell SetDir (_Data Select 3) _Shell SetVelocity (_Data Select 5)

Now assign the action to the vehicle so you can call the script via the action menu and compile the addon. I will bring to your attention the following line of code:

	? !(CanMove _Vehicle) : Exit

When it comes to the Tracked Vehicle class you cant use this method when the vehicle is immobilised through damage, so we need a check to make sure it’s still mobile. If it isn’t then just exit the script. Note: This does not apply to the Car class, but that’s yet another work around.

Getting back to our almost finished addon. In game you should see something like this when you select the Smoke launcher:

[image: image19.png]
That’s it basically, although you probably wont be impressed with the results of my smoke discharger. But your not supposed to be, just as long as you understand how to do your own.

Housekeeping

There is one final thing to cover, and I thought it appropriate to leave it to the end. The Game Logic system is an attempt to work around some of OFP limitations, so it’s far from elegant. There are a few side effects of using Game Logics in this way, one I mentioned earlier regarding the “Move In Back” menu option.

The other was crew and Game Logics being ejected from immobile vehicles. This is complicated further by a bug in OFP. When you repair an immobilised vehicle with the standard repair truck, the AI still refuse to enter until you use the SetDamage 0 command.

Fortunately there is a work around for not only the Game Logic problem but also the repair bug. Using the GetOut event it’s possible to detect when our Game Logics are being ejected by an immobile vehicle.

	GetOut = "_This Call GL_CheckProxy";

GLCheckProxt.sqf

	_Source=Vehicle (_This Select 0); _Unit=_This Select 2; _Vehicle=Vehicle _Source; If (((TypeOf _Unit)=="GLBrad_logic") And !(CanMove _Vehicle)) Then { [_Unit] Exec "GLDelete.sqs"; If ("GLBrad_logic" CountType (Crew _Vehicle)==1) Then { [_Vehicle] Exec "GLRepair.sqs"; }; };

This is a basic function that checks every unit exiting the vehicle for one of our Game Logics “GLBrad_Logic”, as a precaution I also make sure it’s because the vehicle is immobile.

If it is one of our Game Logics, ejecting from the vehicle we need to delete it. We may as well delete it, unless you find the overheads of cam creating Game Logics to much. But for this example we will just delete them, it’s wiser.

Saying that, we can’t do it within the GHCheckProxy.sqf. The GetOut event should really be called GettingOut. As the event is called while the unit is still in the vehicle, so if you try and delete the Game Logic here, it will CTD. Instead we just call GLDelete.sqs:

	If ("GLBrad_logic" CountType (Crew _Vehicle)==1) Then { [_Vehicle] Exec "GLRepair.sqs"; };

Again because the GetOut event is called before the unit leaves, we need to check when the last of our Game Logic’s is ready to exit the vehicle. A quick count of the crew types will tell us when there is only one Game Logic left.

GLDelete.sqs

	_Unit=_This Select 0 DeleteVehicle _Unit

Not much of a script I know. But by calling this as a script, we give OFP time to finish the original call to the GetOut event.

GLRepair.sqs

	_Vehicle=_This Select 0 #Loop ~1 If (CanMove _Vehicle) Then {_Vehicle SetDamage 0 ; [_Vehicle] Call GL_CreateProxy} Else {goto "Loop"}

Another basic function, all that’s happening here is a one second loop that waits until the Vehicle has been repaired. I.e. CanMove=True. Now we know our old Game Logics have been deleted, so we have to create some new ones. Once the vehicle is mobile again, we also have a SetDamage 0 command. You need this even if you’re repairing the vehicle. Without this call, the AI will not enter a repaired vehicle and neither will our Game Logics.

Well that covers the basics, there is a load more you can probably to with the principles. So I hope I’ve gone some way to help explain them.

