Psychic Productions
MCAR In AddOn Editing Addendum:

Missile config HowTo

by Sa8Gecko

revision 1.00

provided with MCAR Beta 2.5

 I Intro / Disclaimer

The purpose for this document is to show how to configure the missiles used with the MCAR system.

This is done via editing some values in config.cpp and in the MCAR functions && scripts.

The missiles used in MCAR are not regular OFP missiles per se and many values that are usually used to refine/define the characteristics of an OFP missile are useless/used differently, as the MCAR missile is guided and handled by the MCAR code.

DO NOT use this as a overall guide for missile configuration, this is ONLY FOR MCAR SYSTEM MISSILES.

THESE INSTRUCTIONS APPLY ONLY ON THE TOW, GASKIN AND GASKIN (IR MISSILE) GUIDANCE CODES.

 II The AA Missile

O2 modelling

I hope you know how to model a missile: I will not explain it there, but you can take a look at tutorial on the web or de-pbo the ammo.pbo in MCAR files.
The important thing is that you need a geometry LOD: don't forget it.

When you've done with the basic model (the head of the missile should point to left in left view...), you need to create some more.
But don't panic, it's easy ! Just take the basic model, rotate it (all the lods) 15 degrees clockwise and save it as another file (i.e.: stinger_p15.p3d). Now take this model, rotate it 15 degrees further clockwise and save it as, for example, stinger_p30.p3d. Do it again until you reach 90 degrees (the missile should point to the zenith).
Now take back the basic model and rotate it 15 degrees counterclockwise, then save it, for example as stinger_m15.p3d.
Continue with rotating the models until the missile poinst -90 degrees (nadir).

Now you should have obtained 13 missile models. This procedure is necessary because you can't (as now, maybe BIS will patch this) set the pitch of an object, missiles included. So we try to make something that will look pretty odd (a missile climbing, but always staying horizontal) look a little better.

Config.cpp
Put the following line under CfgModels, one for each missile model:

class RKT_9m31_xx: Weapon {};
The above example refers directly at the Gaskin's missile, where xx stands for the various tilted missile. Look at the MCAR config to see how's done.

The RKT is of course the tag we use, and should be changed to your own tag.

Next, CfgAmmo:
here is how our gaskin missile is configured in config.cpp:
class RKT_9m31_00: AT3

{

model="\psy_mcar_ammo\9m31\9M31";
minRange=75;
minRangeProbab=0.95;
midRange=600;
maxRange=2500;
maxRangeProbab=0.75;
hit=200;
indirectHit=120;
indirectHitRange=7;
thrustTime=20;
thrust=20;
initTime=0;
maneuvrability=7.5;
maxSpeed=1800;
airlock=1;
irLock=1;
laserLock=1;
maxControlRange=100000;
soundFly[]={"\psy_mcar_sound\psy_mcar_rocketfly.wav",db15,1.2};

};
The important parameters are model, that should refer to your own missile model; hit and indirectHit: assign them the desired values: don't exceed too much 200 for hit and 150 for indirectHit as you'll obtain an overkiller.

Remember that the more the difference between hit and indirectHit (hit being the higher between the two) the more the damage will result for a direct hit, and the less the damage will be done to sorrounding areas. That means that a missile with 200 for hit and 150 for indirectHit will not down a plane equipped
with 180 armor with a single, well centered hit (given the same indirectHitRange value), while one with 200-20 will (but will do little damage if exploding by proximity fuse).
I suggest to set indirectHit at 3/4 of hit to simulate the fragmentation warhead of the missile.

Another important parameter is indirectHitRange: don't set it too large, again if you don't want an overkiller.

The Gaskin guidance code is rather precise (better than the BIS standard one) and if the scenario is not overcrowded or too many scripts are running it will hit its target 95% of the times, 100% if the plane is not flying too high and too near (both) the launcher when the missile is launched.

If you observe degradation in the results above then either you don't have a recent PC or the settings are too high; or the scenario is overcrowded and too many scripts are running.

Or you fired to a very fast plane going away from you, so the missile finished its fuel before reaching the target. Or all of the above.

Then the most important parameters:
thrust and initTime.

First, initTime: set it to zero. We don't want the missile flashing at night when it's substituted with the one with the correct pitch.
thrust: set it very, very low. If it's bigger than a certain value it will spoil the missile guidance code and set the missile off course. Try experimenting and see it by yourself.

Then you have to set all the other missile models too, it's a simple matter of copy and paste, but remember to change the class name accordingly.
For example, here's how are defined the other missile models, from the basic one in MCAR config:
class RKT_9m31_15: RKT_9m31_00
{

model="\psy_mcar_ammo\9m31\9M31_15";
};
class RKT_9m31_30: RKT_9m31_00
{

model="\psy_mcar_ammo\9m31\9M31_30";
};
class RKT_9m31_45: RKT_9m31_00
{

model="\psy_mcar_ammo\9m31\9M31_45";
};
class RKT_9m31_60: RKT_9m31_00
{

model="\psy_mcar_ammo\9m31\9M31_60";
};
class RKT_9m31_75: RKT_9m31_00
{

model="\psy_mcar_ammo\9m31\9M31_75";
};
class RKT_9m31_90: RKT_9m31_00
{

model="\psy_mcar_ammo\9m31\9M31_90";
};
class RKT_9m31_m15: RKT_9m31_00
{

model="\psy_mcar_ammo\9m31\9M31_-15";
};
class RKT_9m31_m30: RKT_9m31_00
{

model="\psy_mcar_ammo\9m31\9M31_-30";
};
class RKT_9m31_m45: RKT_9m31_00
{

model="\psy_mcar_ammo\9m31\9M31_-45";
};
class RKT_9m31_m60: RKT_9m31_00
{

model="\psy_mcar_ammo\9m31\9M31_-60";
};
class RKT_9m31_m75: RKT_9m31_00
{

model="\psy_mcar_ammo\9m31\9M31_-75";
};
class RKT_9m31_m90: RKT_9m31_00
{

model="\psy_mcar_ammo\9m31\9M31_-90";
};

The other thing you need is a 'proximity fuse' activator, but you can copy ours (RKT_detonator).

Functions and scripts

Note:

Tag(s) PSY_MCAR_ are removed from the scripts names just for simplicity.

Also, sqs code is one liner only, so don’t get confused if this doument has the code quotes separated on more than one line and the actual scripts are not.

The sqf code quotes may be a bit screwed too.

In fired.sqs you need to substitute the gaskin basic missile model (RKT_9M31_00) with your own.
In the same way you have to substitute all the missile type strings in tiltmissileAA.sqf (_misArray) with your own. Pay attention to substitute exactly each tilted missile with the one of yours corresponding to it in pitch, or you may obtain odd result.

In guidmis_8.sqs modify this line:

? (_time - _misTime >7) && (_change == 0): _change =1

If you want to change the missile life duration to more than 15 seconds: change 7 with a higher number (less than 10).

You have to modify this line too:
? (_time - _misTime)>15: _chaff = _Missile call PSY_MCAR_detonate ; goto "deleteTarget"

Change the '15' with something more (less than 20).
You can also reduce missile life diminishing the aforementioned parameters instead of augmenting them.
The reason for the '10' and '20' limit is that the missile lifetime in OFP is ten seconds. So even your own missiles, even if not guided by OFP engine, will live only ten seconds before being destroyed automatically. You could make the missiles 'live' more (that is, a succession of missiles simulating a single missile), but you must modify further the scripts. In MCAR 1.0 the missiles will be made to live as long as one wishes, but for now the limit is 20 seconds.

Changing missile parameters such as acceleration and max speed requires the modification of some other file.

In setspeed.sqf changing this portion of the code will change the behaviour of the missile:
if ((_time -_misTime)<10) then
{
 _speed = 70 + (100* (_time - _misTime));
} else
{
 _speed = 450 - (20* (_time - _misTime - 10));
};
if (_speed > 450) then { _speed = 450;};
_turnRate = (_speed - 65)*((_time - _misTime)/3);
if (_turnRate > 60) then { _turnRate = 60;};

'100' is the acceleration of the missile. Change this accordingly to your needs. '10' is the time after which the
missile will start to decelerate.
'450' is missile max speed in meters/secs. Change this in all instances this value appear if you want to modify the maximum speed.

'20' is the deceleration rate in m/(s^2). If you want your missile to loose speed rapidly raise this parameter (but do your calculations so the missile won't end its life with a negative speed !!! maximum deceleration
possible is equal to max speed/(seconds remaining to live)).

Then the turning rate. To obtain a more maneuvrable missile raise the '60' value. Otherwise diminish it. Remember to replace the new value in every place '60' appears in this function.

Then you could modify the maximum climbing acceleration rate of the missile. For this, open vz.sqf and modify '90' in something different, if you want your missile to accelerate faster or slower in the z direction.

 III The AT Missile

Config.cpp
You must define a bullet, that will be the actual ammo fired by your vehicle, which has about the same hitting performances as your intended missile: look at how's done in MCAR cfgAmmo:

class BulletSingle: Default {};
class Bullet7_6: BulletSingle {};
class Bullet12_7: Bullet7_6 {};
class psy_mcar_dummyTow: Bullet12_7
{

airLock=1;
hit=1500;
indirectHit=100;
indirectHitRange=.5;
minRange=100;
minRangeProbab=.7;
midRange=1500;
midRangeProbab=0.9;
maxRange=3500;
maxRangeProbab=0.8;

soundHit[]={"",0,1};
soundHitMan[]={"",0,1};
soundHitArmor[]={"",0,1};
soundHitBuilding[]={"",0,1};
soundFly[]={"",0.010000,2};
soundEngine[]={"",0.001000,1};
explosive=0;
initTime=-1.000000;
cost=1000;
tracerColor[]={0,0,0,0.001};
visibleFire=32
audibleFire=32
visibleFireTime=20

};

You can just copy the code above in your config.cpp. Just change the class name. As you can see it has no sound, no tracer, no explosive, just enough hitting power to make the AI fire it at tanks.

Then you must define the 'real' missile (the one you want to show up in game).

This is how's done in MCAR:

class psy_mcar_tow2a: AT3
{

hit=1000;
indirectHit=250;
indirectHitRange=2.500000;
minRange=50;
minRangeProbab=0.500000;
midRange=600;
midRangeProbab=0.950000;
maxRange=2500;
maxRangeProbab=0.500000;
maxSpeed=300;
cost=20000
model="\psy_mcar_ammo\tow2a\psy_mcar_tow2a";
airlock=0;
irLock=1;
laserLock=1;
manualControl=0;
maxControlRange=100000;
maneuvrability=20.000000;
initTime=0.050000;
thrustTime=20;
thrust=10;
soundFly[]={"\psy_mcar_sound\psy_mcar_rocketfly.wav",db12,2};

};

minRange,midRange and so on are not significant and can be omitted.

Same thing for irLock and laserLock.

The important things are initTime, thrust and thrusTime.

Leave thrustTime at 20, even if the engine will not burn for more than 10 seconds.

Thrust must be very low, to evitate to spoil the missile trajectory.

And initTime should be around 0, so the missile engine will always appear lit.

If you need the missile to light the engine after a certain amount of time, you should define another missile the same as your own, with the chosen initTime, and instruct the scripts when to change it with the 'normal'
(engine always on) one. Fortunately this is far from difficult, even because it's already provided for in the scripts. Take for example fired3.sqs:

_misType = "psy_mcar_tow2aFake"
? typeOf _vS == "psy_mcar_hmmwv_tow2bReal": _misType = "psy_mcar_tow2bFake"

_MCOP = _this select 2
[_MCOP,_ammovel] call PSY_MCAR_smokerAT
_realmissile = [_shooter,_MCOP,_velmod,_misType] call PSY_MCAR_launchAT

The first line contains the type of missile that will be launched.

You can see it's named "..fake", for a reason: the tow missile arms its warhead when it's about 70 meters from the shooting vehicle. So before reaching this distance it will do little damage. We defined this missile as having low hit power, and with the engine off, so that in the initial phase it will simulate properly the real tow missile. When the missile has reached more than 60 meters from the shooter, it gets substituted with the proper one:

...
?(_realmissile distance _shooter) <60: goto "loop"
_misType = "psy_mcar_tow2a"
? typeOf _vS == "psy_mcar_hmmwv_tow2bReal": _misType = "psy_mcar_tow2b"
_realmissile = [_realmissile,_misType] call PSY_MCAR_subs
...

Seen ? not difficult. You just need to change the type names with your own.

cfgWeapons
You must define a weapon just for the bullet: the missiles won't need it.

class MGun: Default {};
class MachineGun7_6: MGun {};
class MachineGun12_7: MachineGun7_6 {};
class psy_mcar_tow2aLauncher: MachineGun12_7
{

ammo="psy_mcar_dummyTow";
displayName="TOW 2A";
magazine="TOW 2A BLII";
displayNameMagazine="TOW 2A";
shortNameMagazine="TOW 2A";
count=7;
soundContinuous=0;
dispersion=0.00;
maxLeadSpeed=1250;
ffCount=1;
autoFire=1;
multiplier=1;
burst=0;
aiRateOfFire=37.5;
aiRateOfFireDistance=3750;
autoReload=1;
canlock =2;
initSpeed=15000;
flash="gunfire";
flashSize=1.000000;
magazines[]={"psy_mcar_tow2aLauncher","psy_mcar_tow2bLauncher"};

sound[]={"\psy_mcar_sound\psy_mcar_towshot.wav",db7,1};
reloadSound[]={"\psy_mcar_sound\psy_mcar_towreload.wav",db-75,0};

PSY_MCAR_RAN_RELOAD_SHOT_TOW;

};

Above is how's done in MCAR.

As you can see this weapon uses the bullet defined above as ammo. Keep burst = 0 to fire one bullet at a time (you don’t want busrt of missiles..).
The important thing here it's initSpeed: set it at least high as above (fifteen thousands meters/second) so that the AI won't put any lead on the target (scripts find the target easier).
Done.

Remember to add this weapon on the vehicle (cfgVehicle).

The Tow 2A ‘Real’ and Tow 2B ‘Real’ can record kills.

Not 100%accurate, but on low lag environment it works well, 2B ‘Real’ records almost all kills, 2A ‘Real is a bit more unstable in this.
How is this done?

Well, in cfgAmmo is defined another bullet, having the same missile (the one you want to appear in game)
parameters as regard hitting power.
Then a weapon is defined that will fire that bullet. Don't worry, it won't show up in game. The only thing left to do is to add a magazine of this weapon (one magazine = only one single shot) to the magazines of the vehicle. Don't add the weapon, so it won't show up in game.

At the right time, when the missile is very near the target, the scripts add this weapon to the unit, make it fire a shot, remove the weapon and re-add a magazine. The player doesn't realize it (at night it could see the light of the weapon firing, but won't see anything else. This is a OFP engine limitation and can’t be avoided).

The “fired” eventHandler will take this bullet and store it in a safe place. When the missile is very very near the target, this bullet is substituted in place of the missile and does (hopefully, it can miss the target) the kill, that will be registered on the Stats sheet.
In this case, that is you want kills to be recorded, you must instruct properly the fired EH (“fired” eventHandler) not to delete this bullet.

Here's how's done in MCAR:

...
fired = "if ((_this select 4) == ""psy_mcar_dummyTow"") then {deleteVehicle (nearestObject [_this select 0, _this select 4]);[_this select 0, _this select 4] exec ""\psy_mcar_scripts\at\PSY_MCAR_getAmmo_3.sqs""}else{[_this select 0, _this select 4,4000] call PSY_MCAR_realbullet;};";
...

Looking at the 'else' part you can see that only the bullet fired intentionally by the player or AI, that represents the missile, is deleted. So modifing a little this code and it's purpose you can make a BTR-90 with missiles and 30mm cannon.

scripts
You must obviously modify the scripts so that they contain the reference to your own missile types. Do a search with Windows looking for MCAR missile types in *.sqs and *.sqf files and replace the occurrences when necessary.

Then you may wish to choose a particular guidance code: the scripts have some, if you don't want to write your own.
- guidMis_2.sqs is a terrain following guidance code, that is the missile will follow terrain contour (not very realistic), flying about 2 meters above ground. Project MCAR Tow 2B uses this.
- guidMis_3.sqs is similar to the BIS standard one, but it's not lead collision, is lead-pursuit. This is more realistic than the previous one. The missile can be guided manually if or until a target is found. Project MCAR Tow 2A uses this.
- guidMis_4.sqs is also terrain following, but the missile flies 20 m above ground.
- guidMis_7.sqs is completely hand guided to the target. It will only lock on target when this is less than 100 meters from the missile: this to help the AI hitting the target. It is also the script that permits kills to be
registered. This also means that you can't target a vehicle 1000 meters away and then go to hide, or move, as you have to keep (realistically) the crosshair on the target to hit it. This script is used by the Project MCAR Tow 2A ‘Real’ and Tow 2B ‘Real’ missiles.

In guidMis_2.sqs and guidMis_4.sqs missile speed is calculated in a very simple although unrealistic way. The advantage of guidMis_4.sqs above guidMis_2.sqs is that speed is calculated with time, that is the result will be equal on all sytem tested, where in guidMis_2.sqs would be not.

But it's easy to move this part of the code:

...
_speed = 50 + (60* (_time - _misTime))
? _speed > 200: _speed = 200
...

to guidMis2.sqs, putting '_misTime = _time' at script start.

GuidMis_3.sqs and guidMis_7.sqs use a realistic, although a little simplified speed curve. In towspeed.sqf is defined an array: the even members are the initial speed, in a two second cycles of the missile, the odd members the accelerations in the same 2 seconds cycle (keep in mind that array indexes start with 0). So, for example, if this array is written this way:

_velArray = [70,105,280,-25,230,-12.5,205,-12.5,180,-7.5,165,-7.5,150,-5,140,-5,130,-5,120,-5,112,-4,104,-4];

this means that from 0 to 2 sec the missile speed will raise from 70 to 280 with an acceleration of 105 m/s^2, while from 2 to 4 sec it will descend from 280 to 230 with a de-celeration of 25 m/s^2, and so on.
You can use this speed curve or make your own if you have the proper one for your missile.

