Psychic Productions
MCAR - In AddOn Editing
by HateR_Kint && Unnamed

revision 1.00

provided with MCAR Beta 2.5
 I Intro / Disclaimer

MCAR works on the principle that any unit entering a Cargo Proxy, creates it’s own X,Y and Z coordinates. As Game Logic’s behave in exactly the same way and as infantry units, and are invisible, they can be used to track the relative position of any point on a vehicle. Attach a Cargo Proxy to the turret it will turn with the turret, attach a Cargo Proxy to the Gun it will elevate with the gun and turn with the turret e.t.c.

This system does have its limitations, the Game Logics have to be maintained in their correct positions and their coordinates have to be calculated relative to sea level. Thanks as always goes to Vektorboson’s very useful Height Above Sea Level function.

By adding a Cargo Proxy to a vehicle, it will automatically add the “Move In Back” option to the player’s menu. For most wheeled vehicles, this is not a problem as they nearly all carry passengers. For other vehicles like the single seater vehicles, the system would have some undesirable side effects.

The order in which Cargo Proxies are created, also corresponds to the order, in which the AI will populate the vehicle during the game. So the first Cargo Proxy to be created in O2, will be the first to be filled by either your squad or yourself, when given the command to board. The same applies when using the script command, moveInCargo.

The MCAR system has to rely on knowing exactly which cargo slots are occupied by our Game Logics. In the case of the Hummer, it’s the last two. So in O2 we have the Driver’s proxy and three Cargo proxies assigned for regular infantry, and an extra two for the Game logic system.

For more info on Game Logic configurations for other uses see MCAR - Game Logics.rtf.

You will not have to worry about managing these Game Logics, as long as you call the correct functions from the init event of your cpp. However if you want to configure your vehicle to have more or less cargo slots than the MCAR hummer or Gaskin, you will need to update config.cpp. More on this later.

This little 'essay' will explain you ONLY the MCAR system usage in your 3D models, I will not teach you how to make a car with an MG nor how to get the sights working on a car class vehicle.

I will also be in the assumption that you know how to go around the O2 so I will NOT explain how to you do everything, I just tell what needs to be done. You will need to know what proxies are (mainly cargo proxy), how they relate to each other and memory LOD with named selections like Konec Hlavne, Usti Hlavne and so on. There are some excellent Tutorials covering these topics and more at http://ofp.gamezone.cz/_hosted/brsseb/

I will briefly mention the config here, but only where is relevant to the MCAR system and its configuration. Although this document does relate directly to the Missile Car, the principles employed can be used for a variety of tasks. Some of which are discussed in MCAR - Game Logics.doc.

NOTE:
ALWAYS include the MCAR-In Mission Editing.doc file in your AddOn package.

You can find the MCAR-In Mission Editing.doc within the same package as this file.

Basic for the the configuration of missiles are explained in

MCAR-IAE Addendum 01: Missile conf HowTo.doc

 II The Model

Open up your car model in O2.

Add two cargo proxies (size don't matter afaik) and align them on your weapons turret/barrel/etc. similar to the way shown in the picture below. Remember for MCAR we only need the direction and elevation of the Gun barrel, so only two additional cargo proxies are needed.

Front View:

[image: image1.png]
Side View:

[image: image2.png]
Then as it's very likely your weapon on the car can turn/tilt/pan/rotate/etc. it is vital to remember to include the cargo proxies on the OtocHlaven and OtocVez selections (and into all possible animation related selections you might have) so that the proxies will be a part of the weapon itself and it's animations.

[image: image3.png]
If you will be using a guidance codes to guide your missile for example (like the default vehicles in MCAR do) it is ABSOLUTELY IMPPERATIVELY VITAL that all named selections regarding the aiming accuracy of the weapon are aligned perfectly, to the 't', I mean in accuracy of 0.001.

So you KonecHlavne and UstiHlavne need to be EXACTLY at the same plane horizontally. Look at the picture below.

[image: image4.png]
For MCAR, it does not matter how far apart they are, as long as they are aligned perfectly.

Depending on the weapon, the cargo proxies on the turret need to be aligned EXACTLY with the above-mentioned named selections. The first proxy at the turrets nose, is the position where the missile will be created. The distance between the two proxies is not so important, but in some cases having them exactly one meter apart, makes scripting some of the maths much easier.

Also that's why I said above that it depends on the weapon if they need to be aligned with the Konec and UstiHlavnes, as like in the MCAR humwee, the weapon is at the side but due to the guidance scripting the Konec and UstiHlavnes need to be at the centre of the gunner/vehicle.

The proxies are needed to calculate the direction of the weapon when fired so that the scripts can start looking for the target in the right direction.

You can always create your own game logics using the Missile p3d. Use the MoveInCargo command to see how they look in game.

[image: image5.png]
Of course, the game logics are not absolutely vital for getting the right direction for the missile. But unlike the fired event, they return consistent results. But they do have the additional benefit of returning the direction of the weapon on demand. Allowing manually guided missiles to be scripted for both the AI and player.

But that's a whole different manual...

 III The config

Ok, some key parts from the config.cpp.

(see also

But first, I will explain the situation. The car class vehicle can't fire anything else but a machinegun, so what you need to do is to create a normal vehicle MG config. Here's a direct 'copy' of the MCAR config.

Ammo Class:

class psy_mcar_dummyTow: Bullet12_7

{

airLock=1;

hit=1500;

indirectHit=100;

indirectHitRange=.5;

minRange=100;

minRangeProbab=.7;

midRange=1500;

midRangeProbab=0.9;

maxRange=3500;

maxRangeProbab=0.8;

soundHit[]={"",0,1};

soundHitMan[]={"",0,1};

soundHitArmor[]={"",0,1};

soundHitBuilding[]={"",0,1};

soundFly[]={"",0.010000,2};

soundEngine[]={"",0.001000,1};

explosive=0;

initTime=-1.000000;

cost=1000;

tracerColor[]={0,0,0,0.001};

visibleFire=32

audibleFire=32

visibleFireTime=20

 };
So first you define the ammo. Which in this case, as it’s for the AI’s benefit only, we will call it “dummy”. Without a bullet, the AI won't fire (and most likely on HI the fired EH won't 'trig').

Operators regarding range have not been studied fully to be sure if they have anything to do with AI engagement. The key parts here are hit values, tracers and the sounds. 'hit' needs to be 100 or over or otherwise the AI won't engage. Tracers need to be set invisible and the sounds should be left blank. Also, it is wise to set the bullet as non-explosive as this bullet should not be apparent during normal game play.

Here's the weapon, a MG called a tow launcher. Key values here: initSpeed

Weapon Class:

class psy_mcar_tow2aLauncher: MachineGun12_7

{

ammo="psy_mcar_dummyTow";

displayName="TOW 2A";

magazine="TOW 2A";

displayNameMagazine="TOW 2A";

shortNameMagazine="TOW 2A";

count=7;

soundContinuous=0;

dispersion=0.00;

maxLeadSpeed=1250;

ffCount=1;

autoFire=1;

multiplier=1;

burst=0;

aiRateOfFire=37.5;

aiRateOfFireDistance=3750;

autoReload=1;

canlock =2;

initSpeed=15000;

flash="gunfire";

flashSize=1.000000;

magazines[]={"psy_mcar_tow2aLauncher","psy_mcar_tow2bLauncher"};

sound[]={"\psy_mcar_sound\psy_mcar_towshot.wav",db7,1};

reloadSound[]={"\psy_mcar_sound\psy_mcar_towreload.wav",db-75,0};

PSY_MCAR_RAN_RELOAD_SHOT_TOW;

};
This needs to be set quite high, in the case of the Hummer we have 15000. The initSpeed has a direct affect on AI aiming deflection, so higher the value, the less deflection. Which results in a more direct aim at the target.

Of course it is wise to set 'burst' to 0 as you don't want your missile launcher to launch a burst of missiles...

Vehicle Class:

This bit is pretty straightforward, you only need to worry about one value if in the vehicles config if you’re changing the numbers of cargo proxies present in the vehicle.

TransportSoldier=3;

TransportSoldier represents the total number of cargo proxies defined. As you add or remove either regular cargo proxies or MCAR’s Game Logic cargo proxies you have to update this value for the system to work correctly

MCAR’s Game Logics:

class psy_mcar_logic: Logic

{

scope=0;

side=7;

cost=1;

};

This is the Game Logic that is going to be inserted into those cargo proxies on the turret.

Scope=0 means that it is not available in the editor and cost=1 (can be 0 too, but as OFP doesn’t like 0 values we left it at 1...) means that you won't get points by killing it when you destroy an enemy MCAR vehicle...

Event Handlers:

This is the section that deals with the eventHandler. I've removed all the other crap (all the init EHs) as they are irrelevant to this.

class eventHandlers

{

[...]

fired = "deleteVehicle (nearestObject [_this select 0, _this select 4]);[_this select 0, _this select 4] exec ""\psy_mcar_scripts\at\PSY_MCAR_getAmmo_2.sqs""";

 };
The call to deleteVehicle, catches the dummy bullet fired and removes it. This is of course the most vital part, as you don't want to have a bullet hitting the target before any missile is even launched.

The caught bullet could of course be used to get the direction for the created missile, but it would increase the probability of the dummy bullet escaping the 'catcher' and doing something unwanted.

The script PSY_MCAR_getAmmo_2.sqs, starts the main guidance code. Which will after thousands of lines of code, eventually lead to a destruction of the targeted vehicle/object/etc.

 IV MCAR system scripts
As mentioned above and in MCAR - Game Logics.rtf, the MCAR system reserves certain Cargo slots for the MCAR Game Logics. As Game Logics behave in almost exactly the same way as regular infantry units, they are also subject to the same rules and conditions. Like regular AI, Game Logics are ejected from any damaged vehicles.

In order for the MCAR system to fire when immobilised, we need to do a bit of house keeping. The exact details are covered in MCAR - Game Logics.rtf. But if you require more or less Game Logics and or cargo slots for your vehicle type, you will have to update the following scripts.

PSY_MCAR_noCrewInHumvee.sqf

PSY_MCAR_createProxyAT.sqf

PSY_MCAR_createProxyAA.sqf

PSY_MCAR_noCrewIn.sqf
Nothing to drastic, in all the above scripts you will find two local variables defined:

	_GLMax
	This holds the total number of valid cargo proxies and MCAR proxies. For example in the case of the Hummer, we have three valid cargo positions. In addition we also have the two extra cargo proxies for the MCAR system. So the Hummer uses a value of 5 for _GLMax. Three cargo slots plus the two MCAR Game Logic slots. Note: This value should always be equal to transportSoldier, as defined in the vehicles config.cpp

	_CargoMax
	Defines the number of valid in game cargo slots only. So again for the Hummer that can carry three extra passengers, it’s set to a value of three.

That's it, in it's simplicity.
